| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uspgrloopvtx.g |
⊢ 𝐺 = 〈 𝑉 , { 〈 𝐴 , { 𝑁 } 〉 } 〉 |
| 2 |
1
|
uspgrloopvtx |
⊢ ( 𝑉 ∈ 𝑊 → ( Vtx ‘ 𝐺 ) = 𝑉 ) |
| 3 |
2
|
3ad2ant1 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ 𝑉 ) → ( Vtx ‘ 𝐺 ) = 𝑉 ) |
| 4 |
|
simp2 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ 𝑉 ) → 𝐴 ∈ 𝑋 ) |
| 5 |
|
simp3 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ 𝑉 ) → 𝑁 ∈ 𝑉 ) |
| 6 |
1
|
uspgrloopiedg |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ) → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝑁 } 〉 } ) |
| 7 |
6
|
3adant3 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ 𝑉 ) → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝑁 } 〉 } ) |
| 8 |
3 4 5 7
|
1loopgrnb0 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ 𝑉 ) → ( 𝐺 NeighbVtx 𝑁 ) = ∅ ) |