Metamath Proof Explorer


Theorem ustbasel

Description: The full set is always an entourage. Condition F_IIb of BourbakiTop1 p. I.36. (Contributed by Thierry Arnoux, 19-Nov-2017)

Ref Expression
Assertion ustbasel ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑋 × 𝑋 ) ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 elfvex ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 ∈ V )
2 isust ( 𝑋 ∈ V → ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ↔ ( 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ ( 𝑋 × 𝑋 ) ∈ 𝑈 ∧ ∀ 𝑣𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣𝑤𝑤𝑈 ) ∧ ∀ 𝑤𝑈 ( 𝑣𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 𝑣𝑈 ∧ ∃ 𝑤𝑈 ( 𝑤𝑤 ) ⊆ 𝑣 ) ) ) ) )
3 1 2 syl ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ↔ ( 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ ( 𝑋 × 𝑋 ) ∈ 𝑈 ∧ ∀ 𝑣𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣𝑤𝑤𝑈 ) ∧ ∀ 𝑤𝑈 ( 𝑣𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 𝑣𝑈 ∧ ∃ 𝑤𝑈 ( 𝑤𝑤 ) ⊆ 𝑣 ) ) ) ) )
4 3 ibi ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ ( 𝑋 × 𝑋 ) ∈ 𝑈 ∧ ∀ 𝑣𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣𝑤𝑤𝑈 ) ∧ ∀ 𝑤𝑈 ( 𝑣𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 𝑣𝑈 ∧ ∃ 𝑤𝑈 ( 𝑤𝑤 ) ⊆ 𝑣 ) ) ) )
5 4 simp2d ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑋 × 𝑋 ) ∈ 𝑈 )