| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uvtxnbgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
1
|
uvtxnbgr |
⊢ ( 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) → ( 𝐺 NeighbVtx 𝑁 ) = ( 𝑉 ∖ { 𝑁 } ) ) |
| 3 |
|
simpl |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ ( 𝐺 NeighbVtx 𝑁 ) = ( 𝑉 ∖ { 𝑁 } ) ) → 𝑁 ∈ 𝑉 ) |
| 4 |
|
raleleq |
⊢ ( ( 𝑉 ∖ { 𝑁 } ) = ( 𝐺 NeighbVtx 𝑁 ) → ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) |
| 5 |
4
|
eqcoms |
⊢ ( ( 𝐺 NeighbVtx 𝑁 ) = ( 𝑉 ∖ { 𝑁 } ) → ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ ( 𝐺 NeighbVtx 𝑁 ) = ( 𝑉 ∖ { 𝑁 } ) ) → ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) |
| 7 |
1
|
uvtxel |
⊢ ( 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) ↔ ( 𝑁 ∈ 𝑉 ∧ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) ) |
| 8 |
3 6 7
|
sylanbrc |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ ( 𝐺 NeighbVtx 𝑁 ) = ( 𝑉 ∖ { 𝑁 } ) ) → 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) ) |
| 9 |
8
|
ex |
⊢ ( 𝑁 ∈ 𝑉 → ( ( 𝐺 NeighbVtx 𝑁 ) = ( 𝑉 ∖ { 𝑁 } ) → 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) ) ) |
| 10 |
2 9
|
impbid2 |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) ↔ ( 𝐺 NeighbVtx 𝑁 ) = ( 𝑉 ∖ { 𝑁 } ) ) ) |