| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uvtxnm1nbgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
1
|
uvtxnm1nbgr |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ ( UnivVtx ‘ 𝐺 ) ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ) |
| 3 |
2
|
ex |
⊢ ( 𝐺 ∈ FinUSGraph → ( 𝑈 ∈ ( UnivVtx ‘ 𝐺 ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ) ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝑈 ∈ ( UnivVtx ‘ 𝐺 ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ) ) |
| 5 |
1
|
nbusgrvtxm1uvtx |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) → 𝑈 ∈ ( UnivVtx ‘ 𝐺 ) ) ) |
| 6 |
4 5
|
impbid |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝑈 ∈ ( UnivVtx ‘ 𝐺 ) ↔ ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ) ) |