Metamath Proof Explorer


Theorem uzf

Description: The domain and range of the upper integers function. (Contributed by Scott Fenton, 8-Aug-2013) (Revised by Mario Carneiro, 3-Nov-2013)

Ref Expression
Assertion uzf : ℤ ⟶ 𝒫 ℤ

Proof

Step Hyp Ref Expression
1 zex ℤ ∈ V
2 ssrab2 { 𝑘 ∈ ℤ ∣ 𝑗𝑘 } ⊆ ℤ
3 1 2 elpwi2 { 𝑘 ∈ ℤ ∣ 𝑗𝑘 } ∈ 𝒫 ℤ
4 3 rgenw 𝑗 ∈ ℤ { 𝑘 ∈ ℤ ∣ 𝑗𝑘 } ∈ 𝒫 ℤ
5 df-uz = ( 𝑗 ∈ ℤ ↦ { 𝑘 ∈ ℤ ∣ 𝑗𝑘 } )
6 5 fmpt ( ∀ 𝑗 ∈ ℤ { 𝑘 ∈ ℤ ∣ 𝑗𝑘 } ∈ 𝒫 ℤ ↔ ℤ : ℤ ⟶ 𝒫 ℤ )
7 4 6 mpbi : ℤ ⟶ 𝒫 ℤ