Metamath Proof Explorer
Description: An upper set of integers is a subset of the Reals. (Contributed by Glauco Siliprandi, 23-Oct-2021)
|
|
Ref |
Expression |
|
Hypothesis |
uzssre2.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
|
Assertion |
uzssre2 |
⊢ 𝑍 ⊆ ℝ |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uzssre2.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
| 3 |
|
zssre |
⊢ ℤ ⊆ ℝ |
| 4 |
2 3
|
sstri |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℝ |
| 5 |
1 4
|
eqsstri |
⊢ 𝑍 ⊆ ℝ |