Metamath Proof Explorer
Description: There are non-measurable sets (the Axiom of Choice is used, in the invoked
weth ). (Contributed by Glauco Siliprandi, 26-Jun-2021)
|
|
Ref |
Expression |
|
Assertion |
vitali2 |
⊢ dom vol ⊊ 𝒫 ℝ |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
reex |
⊢ ℝ ∈ V |
2 |
|
weth |
⊢ ( ℝ ∈ V → ∃ 𝑜 𝑜 We ℝ ) |
3 |
1 2
|
ax-mp |
⊢ ∃ 𝑜 𝑜 We ℝ |
4 |
|
vitali |
⊢ ( 𝑜 We ℝ → dom vol ⊊ 𝒫 ℝ ) |
5 |
4
|
exlimiv |
⊢ ( ∃ 𝑜 𝑜 We ℝ → dom vol ⊊ 𝒫 ℝ ) |
6 |
3 5
|
ax-mp |
⊢ dom vol ⊊ 𝒫 ℝ |