Metamath Proof Explorer
		
		
		
		Description:  There are non-measurable sets (the Axiom of Choice is used, in the invoked
     weth ).  (Contributed by Glauco Siliprandi, 26-Jun-2021)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | vitali2 | ⊢  dom  vol  ⊊  𝒫  ℝ | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 2 |  | weth | ⊢ ( ℝ  ∈  V  →  ∃ 𝑜 𝑜  We  ℝ ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ∃ 𝑜 𝑜  We  ℝ | 
						
							| 4 |  | vitali | ⊢ ( 𝑜  We  ℝ  →  dom  vol  ⊊  𝒫  ℝ ) | 
						
							| 5 | 4 | exlimiv | ⊢ ( ∃ 𝑜 𝑜  We  ℝ  →  dom  vol  ⊊  𝒫  ℝ ) | 
						
							| 6 | 3 5 | ax-mp | ⊢ dom  vol  ⊊  𝒫  ℝ |