Metamath Proof Explorer
Description: There are non-measurable sets (the Axiom of Choice is used, in the invoked
weth ). (Contributed by Glauco Siliprandi, 26-Jun-2021)
|
|
Ref |
Expression |
|
Assertion |
vitali2 |
⊢ dom vol ⊊ 𝒫 ℝ |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reex |
⊢ ℝ ∈ V |
| 2 |
|
weth |
⊢ ( ℝ ∈ V → ∃ 𝑜 𝑜 We ℝ ) |
| 3 |
1 2
|
ax-mp |
⊢ ∃ 𝑜 𝑜 We ℝ |
| 4 |
|
vitali |
⊢ ( 𝑜 We ℝ → dom vol ⊊ 𝒫 ℝ ) |
| 5 |
4
|
exlimiv |
⊢ ( ∃ 𝑜 𝑜 We ℝ → dom vol ⊊ 𝒫 ℝ ) |
| 6 |
3 5
|
ax-mp |
⊢ dom vol ⊊ 𝒫 ℝ |