Metamath Proof Explorer
		
		
		
		Description:  Implicit substitution of classes for setvar variables.  (Contributed by NM, 26-Jul-1995)  (Proof shortened by Andrew Salmon, 8-Jun-2011)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						vtocl2.1 | 
						⊢ 𝐴  ∈  V  | 
					
					
						 | 
						 | 
						vtocl2.2 | 
						⊢ 𝐵  ∈  V  | 
					
					
						 | 
						 | 
						vtocl2.3 | 
						⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( 𝜑  ↔  𝜓 ) )  | 
					
					
						 | 
						 | 
						vtocl2.4 | 
						⊢ 𝜑  | 
					
				
					 | 
					Assertion | 
					vtocl2 | 
					⊢  𝜓  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							vtocl2.1 | 
							⊢ 𝐴  ∈  V  | 
						
						
							| 2 | 
							
								
							 | 
							vtocl2.2 | 
							⊢ 𝐵  ∈  V  | 
						
						
							| 3 | 
							
								
							 | 
							vtocl2.3 | 
							⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( 𝜑  ↔  𝜓 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							vtocl2.4 | 
							⊢ 𝜑  | 
						
						
							| 5 | 
							
								4
							 | 
							a1i | 
							⊢ ( 𝑦  =  𝐵  →  𝜑 )  | 
						
						
							| 6 | 
							
								3
							 | 
							pm5.74da | 
							⊢ ( 𝑥  =  𝐴  →  ( ( 𝑦  =  𝐵  →  𝜑 )  ↔  ( 𝑦  =  𝐵  →  𝜓 ) ) )  | 
						
						
							| 7 | 
							
								1 6 5
							 | 
							vtocl | 
							⊢ ( 𝑦  =  𝐵  →  𝜓 )  | 
						
						
							| 8 | 
							
								5 7
							 | 
							2thd | 
							⊢ ( 𝑦  =  𝐵  →  ( 𝜑  ↔  𝜓 ) )  | 
						
						
							| 9 | 
							
								2 8 4
							 | 
							vtocl | 
							⊢ 𝜓  |