Metamath Proof Explorer
Description: Implicit substitution of classes for setvar variables. (Contributed by NM, 26-Jul-1995) (Proof shortened by Andrew Salmon, 8-Jun-2011)
|
|
Ref |
Expression |
|
Hypotheses |
vtocl2.1 |
⊢ 𝐴 ∈ V |
|
|
vtocl2.2 |
⊢ 𝐵 ∈ V |
|
|
vtocl2.3 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) |
|
|
vtocl2.4 |
⊢ 𝜑 |
|
Assertion |
vtocl2 |
⊢ 𝜓 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
vtocl2.1 |
⊢ 𝐴 ∈ V |
2 |
|
vtocl2.2 |
⊢ 𝐵 ∈ V |
3 |
|
vtocl2.3 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) |
4 |
|
vtocl2.4 |
⊢ 𝜑 |
5 |
4
|
a1i |
⊢ ( 𝑦 = 𝐵 → 𝜑 ) |
6 |
3
|
pm5.74da |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑦 = 𝐵 → 𝜑 ) ↔ ( 𝑦 = 𝐵 → 𝜓 ) ) ) |
7 |
1 6 5
|
vtocl |
⊢ ( 𝑦 = 𝐵 → 𝜓 ) |
8 |
5 7
|
2thd |
⊢ ( 𝑦 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) |
9 |
2 8 4
|
vtocl |
⊢ 𝜓 |