Step |
Hyp |
Ref |
Expression |
1 |
|
wfrlem1.1 |
⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } |
2 |
1
|
wfrlem1 |
⊢ 𝐵 = { 𝑔 ∣ ∃ 𝑧 ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) } |
3 |
2
|
abeq2i |
⊢ ( 𝑔 ∈ 𝐵 ↔ ∃ 𝑧 ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |
4 |
|
fndm |
⊢ ( 𝑔 Fn 𝑧 → dom 𝑔 = 𝑧 ) |
5 |
4
|
sseq1d |
⊢ ( 𝑔 Fn 𝑧 → ( dom 𝑔 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴 ) ) |
6 |
5
|
biimpar |
⊢ ( ( 𝑔 Fn 𝑧 ∧ 𝑧 ⊆ 𝐴 ) → dom 𝑔 ⊆ 𝐴 ) |
7 |
6
|
adantrr |
⊢ ( ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ) → dom 𝑔 ⊆ 𝐴 ) |
8 |
7
|
3adant3 |
⊢ ( ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) → dom 𝑔 ⊆ 𝐴 ) |
9 |
8
|
exlimiv |
⊢ ( ∃ 𝑧 ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) → dom 𝑔 ⊆ 𝐴 ) |
10 |
3 9
|
sylbi |
⊢ ( 𝑔 ∈ 𝐵 → dom 𝑔 ⊆ 𝐴 ) |