Step |
Hyp |
Ref |
Expression |
1 |
|
wfrlem1.1 |
|- B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( F ` ( f |` Pred ( R , A , y ) ) ) ) } |
2 |
1
|
wfrlem1 |
|- B = { g | E. z ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) /\ A. w e. z ( g ` w ) = ( F ` ( g |` Pred ( R , A , w ) ) ) ) } |
3 |
2
|
abeq2i |
|- ( g e. B <-> E. z ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) /\ A. w e. z ( g ` w ) = ( F ` ( g |` Pred ( R , A , w ) ) ) ) ) |
4 |
|
fndm |
|- ( g Fn z -> dom g = z ) |
5 |
4
|
sseq1d |
|- ( g Fn z -> ( dom g C_ A <-> z C_ A ) ) |
6 |
5
|
biimpar |
|- ( ( g Fn z /\ z C_ A ) -> dom g C_ A ) |
7 |
6
|
adantrr |
|- ( ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) ) -> dom g C_ A ) |
8 |
7
|
3adant3 |
|- ( ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) /\ A. w e. z ( g ` w ) = ( F ` ( g |` Pred ( R , A , w ) ) ) ) -> dom g C_ A ) |
9 |
8
|
exlimiv |
|- ( E. z ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) /\ A. w e. z ( g ` w ) = ( F ` ( g |` Pred ( R , A , w ) ) ) ) -> dom g C_ A ) |
10 |
3 9
|
sylbi |
|- ( g e. B -> dom g C_ A ) |