Description: The class of walks is a set. (Contributed by AV, 15-Jan-2021) (Proof shortened by SN, 11-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wksv | ⊢ { 〈 𝑓 , 𝑝 〉 ∣ 𝑓 ( Walks ‘ 𝐺 ) 𝑝 } ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex | ⊢ ( Walks ‘ 𝐺 ) ∈ V | |
| 2 | opabss | ⊢ { 〈 𝑓 , 𝑝 〉 ∣ 𝑓 ( Walks ‘ 𝐺 ) 𝑝 } ⊆ ( Walks ‘ 𝐺 ) | |
| 3 | 1 2 | ssexi | ⊢ { 〈 𝑓 , 𝑝 〉 ∣ 𝑓 ( Walks ‘ 𝐺 ) 𝑝 } ∈ V |