Metamath Proof Explorer


Theorem wl-eujustlem1

Description: Version of cbvexvw with references to ax-6 listed as antecedents. (Contributed by Wolf Lammen, 18-Feb-2026)

Ref Expression
Hypothesis wl-eujustlem1.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion wl-eujustlem1 ( ( ∀ 𝑦𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥𝑦 𝑥 = 𝑦 ) → ( ∃ 𝑥 𝜑 ↔ ∃ 𝑦 𝜓 ) )

Proof

Step Hyp Ref Expression
1 wl-eujustlem1.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
2 1 notbid ( 𝑥 = 𝑦 → ( ¬ 𝜑 ↔ ¬ 𝜓 ) )
3 2 biimpcd ( ¬ 𝜑 → ( 𝑥 = 𝑦 → ¬ 𝜓 ) )
4 3 aleximi ( ∀ 𝑥 ¬ 𝜑 → ( ∃ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 ¬ 𝜓 ) )
5 ax5e ( ∃ 𝑥 ¬ 𝜓 → ¬ 𝜓 )
6 4 5 syl6 ( ∀ 𝑥 ¬ 𝜑 → ( ∃ 𝑥 𝑥 = 𝑦 → ¬ 𝜓 ) )
7 6 alimdv ( ∀ 𝑥 ¬ 𝜑 → ( ∀ 𝑦𝑥 𝑥 = 𝑦 → ∀ 𝑦 ¬ 𝜓 ) )
8 7 com12 ( ∀ 𝑦𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 ¬ 𝜑 → ∀ 𝑦 ¬ 𝜓 ) )
9 2 biimprcd ( ¬ 𝜓 → ( 𝑥 = 𝑦 → ¬ 𝜑 ) )
10 9 aleximi ( ∀ 𝑦 ¬ 𝜓 → ( ∃ 𝑦 𝑥 = 𝑦 → ∃ 𝑦 ¬ 𝜑 ) )
11 ax5e ( ∃ 𝑦 ¬ 𝜑 → ¬ 𝜑 )
12 10 11 syl6 ( ∀ 𝑦 ¬ 𝜓 → ( ∃ 𝑦 𝑥 = 𝑦 → ¬ 𝜑 ) )
13 12 alimdv ( ∀ 𝑦 ¬ 𝜓 → ( ∀ 𝑥𝑦 𝑥 = 𝑦 → ∀ 𝑥 ¬ 𝜑 ) )
14 13 com12 ( ∀ 𝑥𝑦 𝑥 = 𝑦 → ( ∀ 𝑦 ¬ 𝜓 → ∀ 𝑥 ¬ 𝜑 ) )
15 8 14 anbiim ( ( ∀ 𝑦𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥𝑦 𝑥 = 𝑦 ) → ( ∀ 𝑥 ¬ 𝜑 ↔ ∀ 𝑦 ¬ 𝜓 ) )
16 15 notbid ( ( ∀ 𝑦𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥𝑦 𝑥 = 𝑦 ) → ( ¬ ∀ 𝑥 ¬ 𝜑 ↔ ¬ ∀ 𝑦 ¬ 𝜓 ) )
17 df-ex ( ∃ 𝑥 𝜑 ↔ ¬ ∀ 𝑥 ¬ 𝜑 )
18 df-ex ( ∃ 𝑦 𝜓 ↔ ¬ ∀ 𝑦 ¬ 𝜓 )
19 16 17 18 3bitr4g ( ( ∀ 𝑦𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥𝑦 𝑥 = 𝑦 ) → ( ∃ 𝑥 𝜑 ↔ ∃ 𝑦 𝜓 ) )