| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wl-eujustlem1.1 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
1
|
notbid |
⊢ ( 𝑥 = 𝑦 → ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) |
| 3 |
2
|
biimpcd |
⊢ ( ¬ 𝜑 → ( 𝑥 = 𝑦 → ¬ 𝜓 ) ) |
| 4 |
3
|
aleximi |
⊢ ( ∀ 𝑥 ¬ 𝜑 → ( ∃ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 ¬ 𝜓 ) ) |
| 5 |
|
ax5e |
⊢ ( ∃ 𝑥 ¬ 𝜓 → ¬ 𝜓 ) |
| 6 |
4 5
|
syl6 |
⊢ ( ∀ 𝑥 ¬ 𝜑 → ( ∃ 𝑥 𝑥 = 𝑦 → ¬ 𝜓 ) ) |
| 7 |
6
|
alimdv |
⊢ ( ∀ 𝑥 ¬ 𝜑 → ( ∀ 𝑦 ∃ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 ¬ 𝜓 ) ) |
| 8 |
7
|
com12 |
⊢ ( ∀ 𝑦 ∃ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 ¬ 𝜑 → ∀ 𝑦 ¬ 𝜓 ) ) |
| 9 |
2
|
biimprcd |
⊢ ( ¬ 𝜓 → ( 𝑥 = 𝑦 → ¬ 𝜑 ) ) |
| 10 |
9
|
aleximi |
⊢ ( ∀ 𝑦 ¬ 𝜓 → ( ∃ 𝑦 𝑥 = 𝑦 → ∃ 𝑦 ¬ 𝜑 ) ) |
| 11 |
|
ax5e |
⊢ ( ∃ 𝑦 ¬ 𝜑 → ¬ 𝜑 ) |
| 12 |
10 11
|
syl6 |
⊢ ( ∀ 𝑦 ¬ 𝜓 → ( ∃ 𝑦 𝑥 = 𝑦 → ¬ 𝜑 ) ) |
| 13 |
12
|
alimdv |
⊢ ( ∀ 𝑦 ¬ 𝜓 → ( ∀ 𝑥 ∃ 𝑦 𝑥 = 𝑦 → ∀ 𝑥 ¬ 𝜑 ) ) |
| 14 |
13
|
com12 |
⊢ ( ∀ 𝑥 ∃ 𝑦 𝑥 = 𝑦 → ( ∀ 𝑦 ¬ 𝜓 → ∀ 𝑥 ¬ 𝜑 ) ) |
| 15 |
8 14
|
anbiim |
⊢ ( ( ∀ 𝑦 ∃ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 ∃ 𝑦 𝑥 = 𝑦 ) → ( ∀ 𝑥 ¬ 𝜑 ↔ ∀ 𝑦 ¬ 𝜓 ) ) |
| 16 |
15
|
notbid |
⊢ ( ( ∀ 𝑦 ∃ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 ∃ 𝑦 𝑥 = 𝑦 ) → ( ¬ ∀ 𝑥 ¬ 𝜑 ↔ ¬ ∀ 𝑦 ¬ 𝜓 ) ) |
| 17 |
|
df-ex |
⊢ ( ∃ 𝑥 𝜑 ↔ ¬ ∀ 𝑥 ¬ 𝜑 ) |
| 18 |
|
df-ex |
⊢ ( ∃ 𝑦 𝜓 ↔ ¬ ∀ 𝑦 ¬ 𝜓 ) |
| 19 |
16 17 18
|
3bitr4g |
⊢ ( ( ∀ 𝑦 ∃ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 ∃ 𝑦 𝑥 = 𝑦 ) → ( ∃ 𝑥 𝜑 ↔ ∃ 𝑦 𝜓 ) ) |