Metamath Proof Explorer


Theorem xdiv0rp

Description: Division into zero is zero. (Contributed by Thierry Arnoux, 18-Dec-2016)

Ref Expression
Assertion xdiv0rp ( 𝐴 ∈ ℝ+ → ( 0 /𝑒 𝐴 ) = 0 )

Proof

Step Hyp Ref Expression
1 rprene0 ( 𝐴 ∈ ℝ+ → ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) )
2 xdiv0 ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 0 /𝑒 𝐴 ) = 0 )
3 1 2 syl ( 𝐴 ∈ ℝ+ → ( 0 /𝑒 𝐴 ) = 0 )