Description: Division into zero is zero. (Contributed by Thierry Arnoux, 18-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | xdiv0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 0 /𝑒 𝐴 ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re | ⊢ 0 ∈ ℝ | |
2 | rexdiv | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 0 /𝑒 𝐴 ) = ( 0 / 𝐴 ) ) | |
3 | 1 2 | mp3an1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 0 /𝑒 𝐴 ) = ( 0 / 𝐴 ) ) |
4 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
5 | div0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 0 / 𝐴 ) = 0 ) | |
6 | 4 5 | sylan | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 0 / 𝐴 ) = 0 ) |
7 | 3 6 | eqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 0 /𝑒 𝐴 ) = 0 ) |