Metamath Proof Explorer


Theorem xdiv0

Description: Division into zero is zero. (Contributed by Thierry Arnoux, 18-Dec-2016)

Ref Expression
Assertion xdiv0 ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 0 /𝑒 𝐴 ) = 0 )

Proof

Step Hyp Ref Expression
1 0re 0 ∈ ℝ
2 rexdiv ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 0 /𝑒 𝐴 ) = ( 0 / 𝐴 ) )
3 1 2 mp3an1 ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 0 /𝑒 𝐴 ) = ( 0 / 𝐴 ) )
4 recn ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ )
5 div0 ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 0 / 𝐴 ) = 0 )
6 4 5 sylan ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 0 / 𝐴 ) = 0 )
7 3 6 eqtrd ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 0 /𝑒 𝐴 ) = 0 )