Metamath Proof Explorer


Theorem xdiv0

Description: Division into zero is zero. (Contributed by Thierry Arnoux, 18-Dec-2016)

Ref Expression
Assertion xdiv0 AA00÷𝑒A=0

Proof

Step Hyp Ref Expression
1 0re 0
2 rexdiv 0AA00÷𝑒A=0A
3 1 2 mp3an1 AA00÷𝑒A=0A
4 recn AA
5 div0 AA00A=0
6 4 5 sylan AA00A=0
7 3 6 eqtrd AA00÷𝑒A=0