Description: Division into zero is zero. (Contributed by Thierry Arnoux, 18-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | xdiv0 | |- ( ( A e. RR /\ A =/= 0 ) -> ( 0 /e A ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re | |- 0 e. RR |
|
2 | rexdiv | |- ( ( 0 e. RR /\ A e. RR /\ A =/= 0 ) -> ( 0 /e A ) = ( 0 / A ) ) |
|
3 | 1 2 | mp3an1 | |- ( ( A e. RR /\ A =/= 0 ) -> ( 0 /e A ) = ( 0 / A ) ) |
4 | recn | |- ( A e. RR -> A e. CC ) |
|
5 | div0 | |- ( ( A e. CC /\ A =/= 0 ) -> ( 0 / A ) = 0 ) |
|
6 | 4 5 | sylan | |- ( ( A e. RR /\ A =/= 0 ) -> ( 0 / A ) = 0 ) |
7 | 3 6 | eqtrd | |- ( ( A e. RR /\ A =/= 0 ) -> ( 0 /e A ) = 0 ) |