Step |
Hyp |
Ref |
Expression |
1 |
|
redivcl |
|- ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> ( A / B ) e. RR ) |
2 |
|
recn |
|- ( A e. RR -> A e. CC ) |
3 |
|
recn |
|- ( B e. RR -> B e. CC ) |
4 |
|
id |
|- ( B =/= 0 -> B =/= 0 ) |
5 |
2 3 4
|
3anim123i |
|- ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> ( A e. CC /\ B e. CC /\ B =/= 0 ) ) |
6 |
|
divcan2 |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( B x. ( A / B ) ) = A ) |
7 |
5 6
|
syl |
|- ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> ( B x. ( A / B ) ) = A ) |
8 |
|
oveq2 |
|- ( x = ( A / B ) -> ( B x. x ) = ( B x. ( A / B ) ) ) |
9 |
8
|
eqeq1d |
|- ( x = ( A / B ) -> ( ( B x. x ) = A <-> ( B x. ( A / B ) ) = A ) ) |
10 |
9
|
rspcev |
|- ( ( ( A / B ) e. RR /\ ( B x. ( A / B ) ) = A ) -> E. x e. RR ( B x. x ) = A ) |
11 |
1 7 10
|
syl2anc |
|- ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> E. x e. RR ( B x. x ) = A ) |
12 |
|
receu |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> E! x e. CC ( B x. x ) = A ) |
13 |
5 12
|
syl |
|- ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> E! x e. CC ( B x. x ) = A ) |
14 |
|
ax-resscn |
|- RR C_ CC |
15 |
|
id |
|- ( ( B x. x ) = A -> ( B x. x ) = A ) |
16 |
15
|
rgenw |
|- A. x e. RR ( ( B x. x ) = A -> ( B x. x ) = A ) |
17 |
|
riotass2 |
|- ( ( ( RR C_ CC /\ A. x e. RR ( ( B x. x ) = A -> ( B x. x ) = A ) ) /\ ( E. x e. RR ( B x. x ) = A /\ E! x e. CC ( B x. x ) = A ) ) -> ( iota_ x e. RR ( B x. x ) = A ) = ( iota_ x e. CC ( B x. x ) = A ) ) |
18 |
14 16 17
|
mpanl12 |
|- ( ( E. x e. RR ( B x. x ) = A /\ E! x e. CC ( B x. x ) = A ) -> ( iota_ x e. RR ( B x. x ) = A ) = ( iota_ x e. CC ( B x. x ) = A ) ) |
19 |
11 13 18
|
syl2anc |
|- ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> ( iota_ x e. RR ( B x. x ) = A ) = ( iota_ x e. CC ( B x. x ) = A ) ) |
20 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
21 |
|
xdivval |
|- ( ( A e. RR* /\ B e. RR /\ B =/= 0 ) -> ( A /e B ) = ( iota_ x e. RR* ( B *e x ) = A ) ) |
22 |
20 21
|
syl3an1 |
|- ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> ( A /e B ) = ( iota_ x e. RR* ( B *e x ) = A ) ) |
23 |
|
ressxr |
|- RR C_ RR* |
24 |
23
|
a1i |
|- ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> RR C_ RR* ) |
25 |
|
rexmul |
|- ( ( B e. RR /\ x e. RR ) -> ( B *e x ) = ( B x. x ) ) |
26 |
25
|
eqeq1d |
|- ( ( B e. RR /\ x e. RR ) -> ( ( B *e x ) = A <-> ( B x. x ) = A ) ) |
27 |
26
|
biimprd |
|- ( ( B e. RR /\ x e. RR ) -> ( ( B x. x ) = A -> ( B *e x ) = A ) ) |
28 |
27
|
ralrimiva |
|- ( B e. RR -> A. x e. RR ( ( B x. x ) = A -> ( B *e x ) = A ) ) |
29 |
28
|
3ad2ant2 |
|- ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> A. x e. RR ( ( B x. x ) = A -> ( B *e x ) = A ) ) |
30 |
|
xreceu |
|- ( ( A e. RR* /\ B e. RR /\ B =/= 0 ) -> E! x e. RR* ( B *e x ) = A ) |
31 |
20 30
|
syl3an1 |
|- ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> E! x e. RR* ( B *e x ) = A ) |
32 |
|
riotass2 |
|- ( ( ( RR C_ RR* /\ A. x e. RR ( ( B x. x ) = A -> ( B *e x ) = A ) ) /\ ( E. x e. RR ( B x. x ) = A /\ E! x e. RR* ( B *e x ) = A ) ) -> ( iota_ x e. RR ( B x. x ) = A ) = ( iota_ x e. RR* ( B *e x ) = A ) ) |
33 |
24 29 11 31 32
|
syl22anc |
|- ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> ( iota_ x e. RR ( B x. x ) = A ) = ( iota_ x e. RR* ( B *e x ) = A ) ) |
34 |
22 33
|
eqtr4d |
|- ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> ( A /e B ) = ( iota_ x e. RR ( B x. x ) = A ) ) |
35 |
|
divval |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) = ( iota_ x e. CC ( B x. x ) = A ) ) |
36 |
5 35
|
syl |
|- ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> ( A / B ) = ( iota_ x e. CC ( B x. x ) = A ) ) |
37 |
19 34 36
|
3eqtr4d |
|- ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> ( A /e B ) = ( A / B ) ) |