Metamath Proof Explorer


Theorem rexdiv

Description: The extended real division operation when both arguments are real. (Contributed by Thierry Arnoux, 18-Dec-2016)

Ref Expression
Assertion rexdiv ABB0A÷𝑒B=AB

Proof

Step Hyp Ref Expression
1 redivcl ABB0AB
2 recn AA
3 recn BB
4 id B0B0
5 2 3 4 3anim123i ABB0ABB0
6 divcan2 ABB0BAB=A
7 5 6 syl ABB0BAB=A
8 oveq2 x=ABBx=BAB
9 8 eqeq1d x=ABBx=ABAB=A
10 9 rspcev ABBAB=AxBx=A
11 1 7 10 syl2anc ABB0xBx=A
12 receu ABB0∃!xBx=A
13 5 12 syl ABB0∃!xBx=A
14 ax-resscn
15 id Bx=ABx=A
16 15 rgenw xBx=ABx=A
17 riotass2 xBx=ABx=AxBx=A∃!xBx=Aιx|Bx=A=ιx|Bx=A
18 14 16 17 mpanl12 xBx=A∃!xBx=Aιx|Bx=A=ιx|Bx=A
19 11 13 18 syl2anc ABB0ιx|Bx=A=ιx|Bx=A
20 rexr AA*
21 xdivval A*BB0A÷𝑒B=ιx*|B𝑒x=A
22 20 21 syl3an1 ABB0A÷𝑒B=ιx*|B𝑒x=A
23 ressxr *
24 23 a1i ABB0*
25 rexmul BxB𝑒x=Bx
26 25 eqeq1d BxB𝑒x=ABx=A
27 26 biimprd BxBx=AB𝑒x=A
28 27 ralrimiva BxBx=AB𝑒x=A
29 28 3ad2ant2 ABB0xBx=AB𝑒x=A
30 xreceu A*BB0∃!x*B𝑒x=A
31 20 30 syl3an1 ABB0∃!x*B𝑒x=A
32 riotass2 *xBx=AB𝑒x=AxBx=A∃!x*B𝑒x=Aιx|Bx=A=ιx*|B𝑒x=A
33 24 29 11 31 32 syl22anc ABB0ιx|Bx=A=ιx*|B𝑒x=A
34 22 33 eqtr4d ABB0A÷𝑒B=ιx|Bx=A
35 divval ABB0AB=ιx|Bx=A
36 5 35 syl ABB0AB=ιx|Bx=A
37 19 34 36 3eqtr4d ABB0A÷𝑒B=AB