Description: The extended real division operation when both arguments are real. (Contributed by Thierry Arnoux, 18-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | rexdiv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | redivcl | |
|
2 | recn | |
|
3 | recn | |
|
4 | id | |
|
5 | 2 3 4 | 3anim123i | |
6 | divcan2 | |
|
7 | 5 6 | syl | |
8 | oveq2 | |
|
9 | 8 | eqeq1d | |
10 | 9 | rspcev | |
11 | 1 7 10 | syl2anc | |
12 | receu | |
|
13 | 5 12 | syl | |
14 | ax-resscn | |
|
15 | id | |
|
16 | 15 | rgenw | |
17 | riotass2 | |
|
18 | 14 16 17 | mpanl12 | |
19 | 11 13 18 | syl2anc | |
20 | rexr | |
|
21 | xdivval | |
|
22 | 20 21 | syl3an1 | |
23 | ressxr | |
|
24 | 23 | a1i | |
25 | rexmul | |
|
26 | 25 | eqeq1d | |
27 | 26 | biimprd | |
28 | 27 | ralrimiva | |
29 | 28 | 3ad2ant2 | |
30 | xreceu | |
|
31 | 20 30 | syl3an1 | |
32 | riotass2 | |
|
33 | 24 29 11 31 32 | syl22anc | |
34 | 22 33 | eqtr4d | |
35 | divval | |
|
36 | 5 35 | syl | |
37 | 19 34 36 | 3eqtr4d | |