Metamath Proof Explorer


Theorem xdivval

Description: Value of division: the (unique) element x such that ( B x. x ) = A . This is meaningful only when B is nonzero. (Contributed by Thierry Arnoux, 17-Dec-2016)

Ref Expression
Assertion xdivval A*BB0A÷𝑒B=ιx*|B𝑒x=A

Proof

Step Hyp Ref Expression
1 eldifsn B0BB0
2 simpl y=Ax*y=A
3 2 eqeq2d y=Ax*z𝑒x=yz𝑒x=A
4 3 riotabidva y=Aιx*|z𝑒x=y=ιx*|z𝑒x=A
5 simpl z=Bx*z=B
6 5 oveq1d z=Bx*z𝑒x=B𝑒x
7 6 eqeq1d z=Bx*z𝑒x=AB𝑒x=A
8 7 riotabidva z=Bιx*|z𝑒x=A=ιx*|B𝑒x=A
9 df-xdiv ÷𝑒=y*,z0ιx*|z𝑒x=y
10 riotaex ιx*|B𝑒x=AV
11 4 8 9 10 ovmpo A*B0A÷𝑒B=ιx*|B𝑒x=A
12 1 11 sylan2br A*BB0A÷𝑒B=ιx*|B𝑒x=A
13 12 3impb A*BB0A÷𝑒B=ιx*|B𝑒x=A