Metamath Proof Explorer


Definition df-xdiv

Description: Define division over extended real numbers. (Contributed by Thierry Arnoux, 17-Dec-2016)

Ref Expression
Assertion df-xdiv ÷ 𝑒 = x * , y 0 ι z * | y 𝑒 z = x

Detailed syntax breakdown

Step Hyp Ref Expression
0 cxdiv class ÷ 𝑒
1 vx setvar x
2 cxr class *
3 vy setvar y
4 cr class
5 cc0 class 0
6 5 csn class 0
7 4 6 cdif class 0
8 vz setvar z
9 3 cv setvar y
10 cxmu class 𝑒
11 8 cv setvar z
12 9 11 10 co class y 𝑒 z
13 1 cv setvar x
14 12 13 wceq wff y 𝑒 z = x
15 14 8 2 crio class ι z * | y 𝑒 z = x
16 1 3 2 7 15 cmpo class x * , y 0 ι z * | y 𝑒 z = x
17 0 16 wceq wff ÷ 𝑒 = x * , y 0 ι z * | y 𝑒 z = x