Metamath Proof Explorer


Definition df-xdiv

Description: Define division over extended real numbers. (Contributed by Thierry Arnoux, 17-Dec-2016)

Ref Expression
Assertion df-xdiv /𝑒 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ( ℝ ∖ { 0 } ) ↦ ( 𝑧 ∈ ℝ* ( 𝑦 ·e 𝑧 ) = 𝑥 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cxdiv /𝑒
1 vx 𝑥
2 cxr *
3 vy 𝑦
4 cr
5 cc0 0
6 5 csn { 0 }
7 4 6 cdif ( ℝ ∖ { 0 } )
8 vz 𝑧
9 3 cv 𝑦
10 cxmu ·e
11 8 cv 𝑧
12 9 11 10 co ( 𝑦 ·e 𝑧 )
13 1 cv 𝑥
14 12 13 wceq ( 𝑦 ·e 𝑧 ) = 𝑥
15 14 8 2 crio ( 𝑧 ∈ ℝ* ( 𝑦 ·e 𝑧 ) = 𝑥 )
16 1 3 2 7 15 cmpo ( 𝑥 ∈ ℝ* , 𝑦 ∈ ( ℝ ∖ { 0 } ) ↦ ( 𝑧 ∈ ℝ* ( 𝑦 ·e 𝑧 ) = 𝑥 ) )
17 0 16 wceq /𝑒 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ( ℝ ∖ { 0 } ) ↦ ( 𝑧 ∈ ℝ* ( 𝑦 ·e 𝑧 ) = 𝑥 ) )