Description: Define division over extended real numbers. (Contributed by Thierry Arnoux, 17-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | df-xdiv | |- /e = ( x e. RR* , y e. ( RR \ { 0 } ) |-> ( iota_ z e. RR* ( y *e z ) = x ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cxdiv | |- /e |
|
1 | vx | |- x |
|
2 | cxr | |- RR* |
|
3 | vy | |- y |
|
4 | cr | |- RR |
|
5 | cc0 | |- 0 |
|
6 | 5 | csn | |- { 0 } |
7 | 4 6 | cdif | |- ( RR \ { 0 } ) |
8 | vz | |- z |
|
9 | 3 | cv | |- y |
10 | cxmu | |- *e |
|
11 | 8 | cv | |- z |
12 | 9 11 10 | co | |- ( y *e z ) |
13 | 1 | cv | |- x |
14 | 12 13 | wceq | |- ( y *e z ) = x |
15 | 14 8 2 | crio | |- ( iota_ z e. RR* ( y *e z ) = x ) |
16 | 1 3 2 7 15 | cmpo | |- ( x e. RR* , y e. ( RR \ { 0 } ) |-> ( iota_ z e. RR* ( y *e z ) = x ) ) |
17 | 0 16 | wceq | |- /e = ( x e. RR* , y e. ( RR \ { 0 } ) |-> ( iota_ z e. RR* ( y *e z ) = x ) ) |