Metamath Proof Explorer


Definition df-xdiv

Description: Define division over extended real numbers. (Contributed by Thierry Arnoux, 17-Dec-2016)

Ref Expression
Assertion df-xdiv
|- /e = ( x e. RR* , y e. ( RR \ { 0 } ) |-> ( iota_ z e. RR* ( y *e z ) = x ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cxdiv
 |-  /e
1 vx
 |-  x
2 cxr
 |-  RR*
3 vy
 |-  y
4 cr
 |-  RR
5 cc0
 |-  0
6 5 csn
 |-  { 0 }
7 4 6 cdif
 |-  ( RR \ { 0 } )
8 vz
 |-  z
9 3 cv
 |-  y
10 cxmu
 |-  *e
11 8 cv
 |-  z
12 9 11 10 co
 |-  ( y *e z )
13 1 cv
 |-  x
14 12 13 wceq
 |-  ( y *e z ) = x
15 14 8 2 crio
 |-  ( iota_ z e. RR* ( y *e z ) = x )
16 1 3 2 7 15 cmpo
 |-  ( x e. RR* , y e. ( RR \ { 0 } ) |-> ( iota_ z e. RR* ( y *e z ) = x ) )
17 0 16 wceq
 |-  /e = ( x e. RR* , y e. ( RR \ { 0 } ) |-> ( iota_ z e. RR* ( y *e z ) = x ) )