Step |
Hyp |
Ref |
Expression |
1 |
|
eldifsn |
|- ( B e. ( RR \ { 0 } ) <-> ( B e. RR /\ B =/= 0 ) ) |
2 |
|
simpl |
|- ( ( y = A /\ x e. RR* ) -> y = A ) |
3 |
2
|
eqeq2d |
|- ( ( y = A /\ x e. RR* ) -> ( ( z *e x ) = y <-> ( z *e x ) = A ) ) |
4 |
3
|
riotabidva |
|- ( y = A -> ( iota_ x e. RR* ( z *e x ) = y ) = ( iota_ x e. RR* ( z *e x ) = A ) ) |
5 |
|
simpl |
|- ( ( z = B /\ x e. RR* ) -> z = B ) |
6 |
5
|
oveq1d |
|- ( ( z = B /\ x e. RR* ) -> ( z *e x ) = ( B *e x ) ) |
7 |
6
|
eqeq1d |
|- ( ( z = B /\ x e. RR* ) -> ( ( z *e x ) = A <-> ( B *e x ) = A ) ) |
8 |
7
|
riotabidva |
|- ( z = B -> ( iota_ x e. RR* ( z *e x ) = A ) = ( iota_ x e. RR* ( B *e x ) = A ) ) |
9 |
|
df-xdiv |
|- /e = ( y e. RR* , z e. ( RR \ { 0 } ) |-> ( iota_ x e. RR* ( z *e x ) = y ) ) |
10 |
|
riotaex |
|- ( iota_ x e. RR* ( B *e x ) = A ) e. _V |
11 |
4 8 9 10
|
ovmpo |
|- ( ( A e. RR* /\ B e. ( RR \ { 0 } ) ) -> ( A /e B ) = ( iota_ x e. RR* ( B *e x ) = A ) ) |
12 |
1 11
|
sylan2br |
|- ( ( A e. RR* /\ ( B e. RR /\ B =/= 0 ) ) -> ( A /e B ) = ( iota_ x e. RR* ( B *e x ) = A ) ) |
13 |
12
|
3impb |
|- ( ( A e. RR* /\ B e. RR /\ B =/= 0 ) -> ( A /e B ) = ( iota_ x e. RR* ( B *e x ) = A ) ) |