| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldifsn |
⊢ ( 𝐵 ∈ ( ℝ ∖ { 0 } ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ) |
| 2 |
|
simpl |
⊢ ( ( 𝑦 = 𝐴 ∧ 𝑥 ∈ ℝ* ) → 𝑦 = 𝐴 ) |
| 3 |
2
|
eqeq2d |
⊢ ( ( 𝑦 = 𝐴 ∧ 𝑥 ∈ ℝ* ) → ( ( 𝑧 ·e 𝑥 ) = 𝑦 ↔ ( 𝑧 ·e 𝑥 ) = 𝐴 ) ) |
| 4 |
3
|
riotabidva |
⊢ ( 𝑦 = 𝐴 → ( ℩ 𝑥 ∈ ℝ* ( 𝑧 ·e 𝑥 ) = 𝑦 ) = ( ℩ 𝑥 ∈ ℝ* ( 𝑧 ·e 𝑥 ) = 𝐴 ) ) |
| 5 |
|
simpl |
⊢ ( ( 𝑧 = 𝐵 ∧ 𝑥 ∈ ℝ* ) → 𝑧 = 𝐵 ) |
| 6 |
5
|
oveq1d |
⊢ ( ( 𝑧 = 𝐵 ∧ 𝑥 ∈ ℝ* ) → ( 𝑧 ·e 𝑥 ) = ( 𝐵 ·e 𝑥 ) ) |
| 7 |
6
|
eqeq1d |
⊢ ( ( 𝑧 = 𝐵 ∧ 𝑥 ∈ ℝ* ) → ( ( 𝑧 ·e 𝑥 ) = 𝐴 ↔ ( 𝐵 ·e 𝑥 ) = 𝐴 ) ) |
| 8 |
7
|
riotabidva |
⊢ ( 𝑧 = 𝐵 → ( ℩ 𝑥 ∈ ℝ* ( 𝑧 ·e 𝑥 ) = 𝐴 ) = ( ℩ 𝑥 ∈ ℝ* ( 𝐵 ·e 𝑥 ) = 𝐴 ) ) |
| 9 |
|
df-xdiv |
⊢ /𝑒 = ( 𝑦 ∈ ℝ* , 𝑧 ∈ ( ℝ ∖ { 0 } ) ↦ ( ℩ 𝑥 ∈ ℝ* ( 𝑧 ·e 𝑥 ) = 𝑦 ) ) |
| 10 |
|
riotaex |
⊢ ( ℩ 𝑥 ∈ ℝ* ( 𝐵 ·e 𝑥 ) = 𝐴 ) ∈ V |
| 11 |
4 8 9 10
|
ovmpo |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ( ℝ ∖ { 0 } ) ) → ( 𝐴 /𝑒 𝐵 ) = ( ℩ 𝑥 ∈ ℝ* ( 𝐵 ·e 𝑥 ) = 𝐴 ) ) |
| 12 |
1 11
|
sylan2br |
⊢ ( ( 𝐴 ∈ ℝ* ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 /𝑒 𝐵 ) = ( ℩ 𝑥 ∈ ℝ* ( 𝐵 ·e 𝑥 ) = 𝐴 ) ) |
| 13 |
12
|
3impb |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐴 /𝑒 𝐵 ) = ( ℩ 𝑥 ∈ ℝ* ( 𝐵 ·e 𝑥 ) = 𝐴 ) ) |