Metamath Proof Explorer


Theorem xdivval

Description: Value of division: the (unique) element x such that ( B x. x ) = A . This is meaningful only when B is nonzero. (Contributed by Thierry Arnoux, 17-Dec-2016)

Ref Expression
Assertion xdivval ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐴 /𝑒 𝐵 ) = ( 𝑥 ∈ ℝ* ( 𝐵 ·e 𝑥 ) = 𝐴 ) )

Proof

Step Hyp Ref Expression
1 eldifsn ( 𝐵 ∈ ( ℝ ∖ { 0 } ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) )
2 simpl ( ( 𝑦 = 𝐴𝑥 ∈ ℝ* ) → 𝑦 = 𝐴 )
3 2 eqeq2d ( ( 𝑦 = 𝐴𝑥 ∈ ℝ* ) → ( ( 𝑧 ·e 𝑥 ) = 𝑦 ↔ ( 𝑧 ·e 𝑥 ) = 𝐴 ) )
4 3 riotabidva ( 𝑦 = 𝐴 → ( 𝑥 ∈ ℝ* ( 𝑧 ·e 𝑥 ) = 𝑦 ) = ( 𝑥 ∈ ℝ* ( 𝑧 ·e 𝑥 ) = 𝐴 ) )
5 simpl ( ( 𝑧 = 𝐵𝑥 ∈ ℝ* ) → 𝑧 = 𝐵 )
6 5 oveq1d ( ( 𝑧 = 𝐵𝑥 ∈ ℝ* ) → ( 𝑧 ·e 𝑥 ) = ( 𝐵 ·e 𝑥 ) )
7 6 eqeq1d ( ( 𝑧 = 𝐵𝑥 ∈ ℝ* ) → ( ( 𝑧 ·e 𝑥 ) = 𝐴 ↔ ( 𝐵 ·e 𝑥 ) = 𝐴 ) )
8 7 riotabidva ( 𝑧 = 𝐵 → ( 𝑥 ∈ ℝ* ( 𝑧 ·e 𝑥 ) = 𝐴 ) = ( 𝑥 ∈ ℝ* ( 𝐵 ·e 𝑥 ) = 𝐴 ) )
9 df-xdiv /𝑒 = ( 𝑦 ∈ ℝ* , 𝑧 ∈ ( ℝ ∖ { 0 } ) ↦ ( 𝑥 ∈ ℝ* ( 𝑧 ·e 𝑥 ) = 𝑦 ) )
10 riotaex ( 𝑥 ∈ ℝ* ( 𝐵 ·e 𝑥 ) = 𝐴 ) ∈ V
11 4 8 9 10 ovmpo ( ( 𝐴 ∈ ℝ*𝐵 ∈ ( ℝ ∖ { 0 } ) ) → ( 𝐴 /𝑒 𝐵 ) = ( 𝑥 ∈ ℝ* ( 𝐵 ·e 𝑥 ) = 𝐴 ) )
12 1 11 sylan2br ( ( 𝐴 ∈ ℝ* ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 /𝑒 𝐵 ) = ( 𝑥 ∈ ℝ* ( 𝐵 ·e 𝑥 ) = 𝐴 ) )
13 12 3impb ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐴 /𝑒 𝐵 ) = ( 𝑥 ∈ ℝ* ( 𝐵 ·e 𝑥 ) = 𝐴 ) )