Metamath Proof Explorer


Theorem xdivrec

Description: Relationship between division and reciprocal. (Contributed by Thierry Arnoux, 5-Jul-2017)

Ref Expression
Assertion xdivrec A*BB0A÷𝑒B=A𝑒1÷𝑒B

Proof

Step Hyp Ref Expression
1 simp2 A*BB0B
2 1 rexrd A*BB0B*
3 simp1 A*BB0A*
4 1xr 1*
5 4 a1i A*BB01*
6 simp3 A*BB0B0
7 5 1 6 xdivcld A*BB01÷𝑒B*
8 3 7 xmulcld A*BB0A𝑒1÷𝑒B*
9 xmulcom B*A𝑒1÷𝑒B*B𝑒A𝑒1÷𝑒B=A𝑒1÷𝑒B𝑒B
10 2 8 9 syl2anc A*BB0B𝑒A𝑒1÷𝑒B=A𝑒1÷𝑒B𝑒B
11 xmulass A*1÷𝑒B*B*A𝑒1÷𝑒B𝑒B=A𝑒1÷𝑒B𝑒B
12 3 7 2 11 syl3anc A*BB0A𝑒1÷𝑒B𝑒B=A𝑒1÷𝑒B𝑒B
13 xmulcom 1÷𝑒B*B*1÷𝑒B𝑒B=B𝑒1÷𝑒B
14 7 2 13 syl2anc A*BB01÷𝑒B𝑒B=B𝑒1÷𝑒B
15 eqid 1÷𝑒B=1÷𝑒B
16 xdivmul 1*1÷𝑒B*BB01÷𝑒B=1÷𝑒BB𝑒1÷𝑒B=1
17 5 7 1 6 16 syl112anc A*BB01÷𝑒B=1÷𝑒BB𝑒1÷𝑒B=1
18 15 17 mpbii A*BB0B𝑒1÷𝑒B=1
19 14 18 eqtrd A*BB01÷𝑒B𝑒B=1
20 19 oveq2d A*BB0A𝑒1÷𝑒B𝑒B=A𝑒1
21 10 12 20 3eqtrd A*BB0B𝑒A𝑒1÷𝑒B=A𝑒1
22 xmulrid A*A𝑒1=A
23 3 22 syl A*BB0A𝑒1=A
24 21 23 eqtrd A*BB0B𝑒A𝑒1÷𝑒B=A
25 xdivmul A*A𝑒1÷𝑒B*BB0A÷𝑒B=A𝑒1÷𝑒BB𝑒A𝑒1÷𝑒B=A
26 3 8 1 6 25 syl112anc A*BB0A÷𝑒B=A𝑒1÷𝑒BB𝑒A𝑒1÷𝑒B=A
27 24 26 mpbird A*BB0A÷𝑒B=A𝑒1÷𝑒B