Description: Relationship between division and reciprocal. (Contributed by Thierry Arnoux, 5-Jul-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | xdivrec | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 | |
|
2 | 1 | rexrd | |
3 | simp1 | |
|
4 | 1xr | |
|
5 | 4 | a1i | |
6 | simp3 | |
|
7 | 5 1 6 | xdivcld | |
8 | 3 7 | xmulcld | |
9 | xmulcom | |
|
10 | 2 8 9 | syl2anc | |
11 | xmulass | |
|
12 | 3 7 2 11 | syl3anc | |
13 | xmulcom | |
|
14 | 7 2 13 | syl2anc | |
15 | eqid | |
|
16 | xdivmul | |
|
17 | 5 7 1 6 16 | syl112anc | |
18 | 15 17 | mpbii | |
19 | 14 18 | eqtrd | |
20 | 19 | oveq2d | |
21 | 10 12 20 | 3eqtrd | |
22 | xmulrid | |
|
23 | 3 22 | syl | |
24 | 21 23 | eqtrd | |
25 | xdivmul | |
|
26 | 3 8 1 6 25 | syl112anc | |
27 | 24 26 | mpbird | |