Metamath Proof Explorer


Theorem xdivrec

Description: Relationship between division and reciprocal. (Contributed by Thierry Arnoux, 5-Jul-2017)

Ref Expression
Assertion xdivrec A * B B 0 A ÷ 𝑒 B = A 𝑒 1 ÷ 𝑒 B

Proof

Step Hyp Ref Expression
1 simp2 A * B B 0 B
2 1 rexrd A * B B 0 B *
3 simp1 A * B B 0 A *
4 1xr 1 *
5 4 a1i A * B B 0 1 *
6 simp3 A * B B 0 B 0
7 5 1 6 xdivcld A * B B 0 1 ÷ 𝑒 B *
8 3 7 xmulcld A * B B 0 A 𝑒 1 ÷ 𝑒 B *
9 xmulcom B * A 𝑒 1 ÷ 𝑒 B * B 𝑒 A 𝑒 1 ÷ 𝑒 B = A 𝑒 1 ÷ 𝑒 B 𝑒 B
10 2 8 9 syl2anc A * B B 0 B 𝑒 A 𝑒 1 ÷ 𝑒 B = A 𝑒 1 ÷ 𝑒 B 𝑒 B
11 xmulass A * 1 ÷ 𝑒 B * B * A 𝑒 1 ÷ 𝑒 B 𝑒 B = A 𝑒 1 ÷ 𝑒 B 𝑒 B
12 3 7 2 11 syl3anc A * B B 0 A 𝑒 1 ÷ 𝑒 B 𝑒 B = A 𝑒 1 ÷ 𝑒 B 𝑒 B
13 xmulcom 1 ÷ 𝑒 B * B * 1 ÷ 𝑒 B 𝑒 B = B 𝑒 1 ÷ 𝑒 B
14 7 2 13 syl2anc A * B B 0 1 ÷ 𝑒 B 𝑒 B = B 𝑒 1 ÷ 𝑒 B
15 eqid 1 ÷ 𝑒 B = 1 ÷ 𝑒 B
16 xdivmul 1 * 1 ÷ 𝑒 B * B B 0 1 ÷ 𝑒 B = 1 ÷ 𝑒 B B 𝑒 1 ÷ 𝑒 B = 1
17 5 7 1 6 16 syl112anc A * B B 0 1 ÷ 𝑒 B = 1 ÷ 𝑒 B B 𝑒 1 ÷ 𝑒 B = 1
18 15 17 mpbii A * B B 0 B 𝑒 1 ÷ 𝑒 B = 1
19 14 18 eqtrd A * B B 0 1 ÷ 𝑒 B 𝑒 B = 1
20 19 oveq2d A * B B 0 A 𝑒 1 ÷ 𝑒 B 𝑒 B = A 𝑒 1
21 10 12 20 3eqtrd A * B B 0 B 𝑒 A 𝑒 1 ÷ 𝑒 B = A 𝑒 1
22 xmulid1 A * A 𝑒 1 = A
23 3 22 syl A * B B 0 A 𝑒 1 = A
24 21 23 eqtrd A * B B 0 B 𝑒 A 𝑒 1 ÷ 𝑒 B = A
25 xdivmul A * A 𝑒 1 ÷ 𝑒 B * B B 0 A ÷ 𝑒 B = A 𝑒 1 ÷ 𝑒 B B 𝑒 A 𝑒 1 ÷ 𝑒 B = A
26 3 8 1 6 25 syl112anc A * B B 0 A ÷ 𝑒 B = A 𝑒 1 ÷ 𝑒 B B 𝑒 A 𝑒 1 ÷ 𝑒 B = A
27 24 26 mpbird A * B B 0 A ÷ 𝑒 B = A 𝑒 1 ÷ 𝑒 B