| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℝ ) |
| 2 |
1
|
rexrd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℝ* ) |
| 3 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → 𝐴 ∈ ℝ* ) |
| 4 |
|
1xr |
⊢ 1 ∈ ℝ* |
| 5 |
4
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → 1 ∈ ℝ* ) |
| 6 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → 𝐵 ≠ 0 ) |
| 7 |
5 1 6
|
xdivcld |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 1 /𝑒 𝐵 ) ∈ ℝ* ) |
| 8 |
3 7
|
xmulcld |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐴 ·e ( 1 /𝑒 𝐵 ) ) ∈ ℝ* ) |
| 9 |
|
xmulcom |
⊢ ( ( 𝐵 ∈ ℝ* ∧ ( 𝐴 ·e ( 1 /𝑒 𝐵 ) ) ∈ ℝ* ) → ( 𝐵 ·e ( 𝐴 ·e ( 1 /𝑒 𝐵 ) ) ) = ( ( 𝐴 ·e ( 1 /𝑒 𝐵 ) ) ·e 𝐵 ) ) |
| 10 |
2 8 9
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐵 ·e ( 𝐴 ·e ( 1 /𝑒 𝐵 ) ) ) = ( ( 𝐴 ·e ( 1 /𝑒 𝐵 ) ) ·e 𝐵 ) ) |
| 11 |
|
xmulass |
⊢ ( ( 𝐴 ∈ ℝ* ∧ ( 1 /𝑒 𝐵 ) ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 ·e ( 1 /𝑒 𝐵 ) ) ·e 𝐵 ) = ( 𝐴 ·e ( ( 1 /𝑒 𝐵 ) ·e 𝐵 ) ) ) |
| 12 |
3 7 2 11
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 ·e ( 1 /𝑒 𝐵 ) ) ·e 𝐵 ) = ( 𝐴 ·e ( ( 1 /𝑒 𝐵 ) ·e 𝐵 ) ) ) |
| 13 |
|
xmulcom |
⊢ ( ( ( 1 /𝑒 𝐵 ) ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 1 /𝑒 𝐵 ) ·e 𝐵 ) = ( 𝐵 ·e ( 1 /𝑒 𝐵 ) ) ) |
| 14 |
7 2 13
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( ( 1 /𝑒 𝐵 ) ·e 𝐵 ) = ( 𝐵 ·e ( 1 /𝑒 𝐵 ) ) ) |
| 15 |
|
eqid |
⊢ ( 1 /𝑒 𝐵 ) = ( 1 /𝑒 𝐵 ) |
| 16 |
|
xdivmul |
⊢ ( ( 1 ∈ ℝ* ∧ ( 1 /𝑒 𝐵 ) ∈ ℝ* ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ) → ( ( 1 /𝑒 𝐵 ) = ( 1 /𝑒 𝐵 ) ↔ ( 𝐵 ·e ( 1 /𝑒 𝐵 ) ) = 1 ) ) |
| 17 |
5 7 1 6 16
|
syl112anc |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( ( 1 /𝑒 𝐵 ) = ( 1 /𝑒 𝐵 ) ↔ ( 𝐵 ·e ( 1 /𝑒 𝐵 ) ) = 1 ) ) |
| 18 |
15 17
|
mpbii |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐵 ·e ( 1 /𝑒 𝐵 ) ) = 1 ) |
| 19 |
14 18
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( ( 1 /𝑒 𝐵 ) ·e 𝐵 ) = 1 ) |
| 20 |
19
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐴 ·e ( ( 1 /𝑒 𝐵 ) ·e 𝐵 ) ) = ( 𝐴 ·e 1 ) ) |
| 21 |
10 12 20
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐵 ·e ( 𝐴 ·e ( 1 /𝑒 𝐵 ) ) ) = ( 𝐴 ·e 1 ) ) |
| 22 |
|
xmulrid |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 ·e 1 ) = 𝐴 ) |
| 23 |
3 22
|
syl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐴 ·e 1 ) = 𝐴 ) |
| 24 |
21 23
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐵 ·e ( 𝐴 ·e ( 1 /𝑒 𝐵 ) ) ) = 𝐴 ) |
| 25 |
|
xdivmul |
⊢ ( ( 𝐴 ∈ ℝ* ∧ ( 𝐴 ·e ( 1 /𝑒 𝐵 ) ) ∈ ℝ* ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 /𝑒 𝐵 ) = ( 𝐴 ·e ( 1 /𝑒 𝐵 ) ) ↔ ( 𝐵 ·e ( 𝐴 ·e ( 1 /𝑒 𝐵 ) ) ) = 𝐴 ) ) |
| 26 |
3 8 1 6 25
|
syl112anc |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 /𝑒 𝐵 ) = ( 𝐴 ·e ( 1 /𝑒 𝐵 ) ) ↔ ( 𝐵 ·e ( 𝐴 ·e ( 1 /𝑒 𝐵 ) ) ) = 𝐴 ) ) |
| 27 |
24 26
|
mpbird |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐴 /𝑒 𝐵 ) = ( 𝐴 ·e ( 1 /𝑒 𝐵 ) ) ) |