Step |
Hyp |
Ref |
Expression |
1 |
|
elxr |
⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) |
2 |
|
1re |
⊢ 1 ∈ ℝ |
3 |
|
rexmul |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝐴 ·e 1 ) = ( 𝐴 · 1 ) ) |
4 |
2 3
|
mpan2 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ·e 1 ) = ( 𝐴 · 1 ) ) |
5 |
|
ax-1rid |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 · 1 ) = 𝐴 ) |
6 |
4 5
|
eqtrd |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ·e 1 ) = 𝐴 ) |
7 |
|
1xr |
⊢ 1 ∈ ℝ* |
8 |
|
0lt1 |
⊢ 0 < 1 |
9 |
|
xmulpnf2 |
⊢ ( ( 1 ∈ ℝ* ∧ 0 < 1 ) → ( +∞ ·e 1 ) = +∞ ) |
10 |
7 8 9
|
mp2an |
⊢ ( +∞ ·e 1 ) = +∞ |
11 |
|
oveq1 |
⊢ ( 𝐴 = +∞ → ( 𝐴 ·e 1 ) = ( +∞ ·e 1 ) ) |
12 |
|
id |
⊢ ( 𝐴 = +∞ → 𝐴 = +∞ ) |
13 |
10 11 12
|
3eqtr4a |
⊢ ( 𝐴 = +∞ → ( 𝐴 ·e 1 ) = 𝐴 ) |
14 |
|
xmulmnf2 |
⊢ ( ( 1 ∈ ℝ* ∧ 0 < 1 ) → ( -∞ ·e 1 ) = -∞ ) |
15 |
7 8 14
|
mp2an |
⊢ ( -∞ ·e 1 ) = -∞ |
16 |
|
oveq1 |
⊢ ( 𝐴 = -∞ → ( 𝐴 ·e 1 ) = ( -∞ ·e 1 ) ) |
17 |
|
id |
⊢ ( 𝐴 = -∞ → 𝐴 = -∞ ) |
18 |
15 16 17
|
3eqtr4a |
⊢ ( 𝐴 = -∞ → ( 𝐴 ·e 1 ) = 𝐴 ) |
19 |
6 13 18
|
3jaoi |
⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) → ( 𝐴 ·e 1 ) = 𝐴 ) |
20 |
1 19
|
sylbi |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 ·e 1 ) = 𝐴 ) |