Step |
Hyp |
Ref |
Expression |
1 |
|
xdivcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
2 |
|
xdivcld.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
xdivcld.3 |
⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
4 |
|
xdivval |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐴 /𝑒 𝐵 ) = ( ℩ 𝑥 ∈ ℝ* ( 𝐵 ·e 𝑥 ) = 𝐴 ) ) |
5 |
1 2 3 4
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 /𝑒 𝐵 ) = ( ℩ 𝑥 ∈ ℝ* ( 𝐵 ·e 𝑥 ) = 𝐴 ) ) |
6 |
|
xreceu |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ∃! 𝑥 ∈ ℝ* ( 𝐵 ·e 𝑥 ) = 𝐴 ) |
7 |
1 2 3 6
|
syl3anc |
⊢ ( 𝜑 → ∃! 𝑥 ∈ ℝ* ( 𝐵 ·e 𝑥 ) = 𝐴 ) |
8 |
|
riotacl |
⊢ ( ∃! 𝑥 ∈ ℝ* ( 𝐵 ·e 𝑥 ) = 𝐴 → ( ℩ 𝑥 ∈ ℝ* ( 𝐵 ·e 𝑥 ) = 𝐴 ) ∈ ℝ* ) |
9 |
7 8
|
syl |
⊢ ( 𝜑 → ( ℩ 𝑥 ∈ ℝ* ( 𝐵 ·e 𝑥 ) = 𝐴 ) ∈ ℝ* ) |
10 |
5 9
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐴 /𝑒 𝐵 ) ∈ ℝ* ) |