Metamath Proof Explorer


Theorem xdivcld

Description: Closure law for the extended division. (Contributed by Thierry Arnoux, 15-Mar-2017)

Ref Expression
Hypotheses xdivcld.1 ( 𝜑𝐴 ∈ ℝ* )
xdivcld.2 ( 𝜑𝐵 ∈ ℝ )
xdivcld.3 ( 𝜑𝐵 ≠ 0 )
Assertion xdivcld ( 𝜑 → ( 𝐴 /𝑒 𝐵 ) ∈ ℝ* )

Proof

Step Hyp Ref Expression
1 xdivcld.1 ( 𝜑𝐴 ∈ ℝ* )
2 xdivcld.2 ( 𝜑𝐵 ∈ ℝ )
3 xdivcld.3 ( 𝜑𝐵 ≠ 0 )
4 xdivval ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐴 /𝑒 𝐵 ) = ( 𝑥 ∈ ℝ* ( 𝐵 ·e 𝑥 ) = 𝐴 ) )
5 1 2 3 4 syl3anc ( 𝜑 → ( 𝐴 /𝑒 𝐵 ) = ( 𝑥 ∈ ℝ* ( 𝐵 ·e 𝑥 ) = 𝐴 ) )
6 xreceu ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ∃! 𝑥 ∈ ℝ* ( 𝐵 ·e 𝑥 ) = 𝐴 )
7 1 2 3 6 syl3anc ( 𝜑 → ∃! 𝑥 ∈ ℝ* ( 𝐵 ·e 𝑥 ) = 𝐴 )
8 riotacl ( ∃! 𝑥 ∈ ℝ* ( 𝐵 ·e 𝑥 ) = 𝐴 → ( 𝑥 ∈ ℝ* ( 𝐵 ·e 𝑥 ) = 𝐴 ) ∈ ℝ* )
9 7 8 syl ( 𝜑 → ( 𝑥 ∈ ℝ* ( 𝐵 ·e 𝑥 ) = 𝐴 ) ∈ ℝ* )
10 5 9 eqeltrd ( 𝜑 → ( 𝐴 /𝑒 𝐵 ) ∈ ℝ* )