Metamath Proof Explorer


Theorem xdivcld

Description: Closure law for the extended division. (Contributed by Thierry Arnoux, 15-Mar-2017)

Ref Expression
Hypotheses xdivcld.1 φA*
xdivcld.2 φB
xdivcld.3 φB0
Assertion xdivcld φA÷𝑒B*

Proof

Step Hyp Ref Expression
1 xdivcld.1 φA*
2 xdivcld.2 φB
3 xdivcld.3 φB0
4 xdivval A*BB0A÷𝑒B=ιx*|B𝑒x=A
5 1 2 3 4 syl3anc φA÷𝑒B=ιx*|B𝑒x=A
6 xreceu A*BB0∃!x*B𝑒x=A
7 1 2 3 6 syl3anc φ∃!x*B𝑒x=A
8 riotacl ∃!x*B𝑒x=Aιx*|B𝑒x=A*
9 7 8 syl φιx*|B𝑒x=A*
10 5 9 eqeltrd φA÷𝑒B*