Metamath Proof Explorer


Theorem xdivcl

Description: Closure law for the extended division. (Contributed by Thierry Arnoux, 15-Mar-2017)

Ref Expression
Assertion xdivcl A * B B 0 A ÷ 𝑒 B *

Proof

Step Hyp Ref Expression
1 simp1 A * B B 0 A *
2 simp2 A * B B 0 B
3 simp3 A * B B 0 B 0
4 1 2 3 xdivcld A * B B 0 A ÷ 𝑒 B *