Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Decimal expansion
Division in the extended real number system
xdivcl
Next ⟩
xdivmul
Metamath Proof Explorer
Ascii
Unicode
Theorem
xdivcl
Description:
Closure law for the extended division.
(Contributed by
Thierry Arnoux
, 15-Mar-2017)
Ref
Expression
Assertion
xdivcl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
∧
B
≠
0
→
A
÷
𝑒
B
∈
ℝ
*
Proof
Step
Hyp
Ref
Expression
1
simp1
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
∧
B
≠
0
→
A
∈
ℝ
*
2
simp2
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
∧
B
≠
0
→
B
∈
ℝ
3
simp3
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
∧
B
≠
0
→
B
≠
0
4
1
2
3
xdivcld
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
∧
B
≠
0
→
A
÷
𝑒
B
∈
ℝ
*