Metamath Proof Explorer


Theorem xdivcl

Description: Closure law for the extended division. (Contributed by Thierry Arnoux, 15-Mar-2017)

Ref Expression
Assertion xdivcl A*BB0A÷𝑒B*

Proof

Step Hyp Ref Expression
1 simp1 A*BB0A*
2 simp2 A*BB0B
3 simp3 A*BB0B0
4 1 2 3 xdivcld A*BB0A÷𝑒B*