Description: Closure law for the extended division. (Contributed by Thierry Arnoux, 15-Mar-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | xdivcl | |- ( ( A e. RR* /\ B e. RR /\ B =/= 0 ) -> ( A /e B ) e. RR* ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 | |- ( ( A e. RR* /\ B e. RR /\ B =/= 0 ) -> A e. RR* ) |
|
2 | simp2 | |- ( ( A e. RR* /\ B e. RR /\ B =/= 0 ) -> B e. RR ) |
|
3 | simp3 | |- ( ( A e. RR* /\ B e. RR /\ B =/= 0 ) -> B =/= 0 ) |
|
4 | 1 2 3 | xdivcld | |- ( ( A e. RR* /\ B e. RR /\ B =/= 0 ) -> ( A /e B ) e. RR* ) |