Step |
Hyp |
Ref |
Expression |
1 |
|
xdivval |
|- ( ( A e. RR* /\ C e. RR /\ C =/= 0 ) -> ( A /e C ) = ( iota_ x e. RR* ( C *e x ) = A ) ) |
2 |
1
|
3expb |
|- ( ( A e. RR* /\ ( C e. RR /\ C =/= 0 ) ) -> ( A /e C ) = ( iota_ x e. RR* ( C *e x ) = A ) ) |
3 |
2
|
3adant2 |
|- ( ( A e. RR* /\ B e. RR* /\ ( C e. RR /\ C =/= 0 ) ) -> ( A /e C ) = ( iota_ x e. RR* ( C *e x ) = A ) ) |
4 |
3
|
eqeq1d |
|- ( ( A e. RR* /\ B e. RR* /\ ( C e. RR /\ C =/= 0 ) ) -> ( ( A /e C ) = B <-> ( iota_ x e. RR* ( C *e x ) = A ) = B ) ) |
5 |
|
simp2 |
|- ( ( A e. RR* /\ B e. RR* /\ ( C e. RR /\ C =/= 0 ) ) -> B e. RR* ) |
6 |
|
xreceu |
|- ( ( A e. RR* /\ C e. RR /\ C =/= 0 ) -> E! x e. RR* ( C *e x ) = A ) |
7 |
6
|
3expb |
|- ( ( A e. RR* /\ ( C e. RR /\ C =/= 0 ) ) -> E! x e. RR* ( C *e x ) = A ) |
8 |
7
|
3adant2 |
|- ( ( A e. RR* /\ B e. RR* /\ ( C e. RR /\ C =/= 0 ) ) -> E! x e. RR* ( C *e x ) = A ) |
9 |
|
oveq2 |
|- ( x = B -> ( C *e x ) = ( C *e B ) ) |
10 |
9
|
eqeq1d |
|- ( x = B -> ( ( C *e x ) = A <-> ( C *e B ) = A ) ) |
11 |
10
|
riota2 |
|- ( ( B e. RR* /\ E! x e. RR* ( C *e x ) = A ) -> ( ( C *e B ) = A <-> ( iota_ x e. RR* ( C *e x ) = A ) = B ) ) |
12 |
5 8 11
|
syl2anc |
|- ( ( A e. RR* /\ B e. RR* /\ ( C e. RR /\ C =/= 0 ) ) -> ( ( C *e B ) = A <-> ( iota_ x e. RR* ( C *e x ) = A ) = B ) ) |
13 |
4 12
|
bitr4d |
|- ( ( A e. RR* /\ B e. RR* /\ ( C e. RR /\ C =/= 0 ) ) -> ( ( A /e C ) = B <-> ( C *e B ) = A ) ) |