Metamath Proof Explorer


Theorem xdivmul

Description: Relationship between division and multiplication. (Contributed by Thierry Arnoux, 24-Dec-2016)

Ref Expression
Assertion xdivmul ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 /𝑒 𝐶 ) = 𝐵 ↔ ( 𝐶 ·e 𝐵 ) = 𝐴 ) )

Proof

Step Hyp Ref Expression
1 xdivval ( ( 𝐴 ∈ ℝ*𝐶 ∈ ℝ ∧ 𝐶 ≠ 0 ) → ( 𝐴 /𝑒 𝐶 ) = ( 𝑥 ∈ ℝ* ( 𝐶 ·e 𝑥 ) = 𝐴 ) )
2 1 3expb ( ( 𝐴 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0 ) ) → ( 𝐴 /𝑒 𝐶 ) = ( 𝑥 ∈ ℝ* ( 𝐶 ·e 𝑥 ) = 𝐴 ) )
3 2 3adant2 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0 ) ) → ( 𝐴 /𝑒 𝐶 ) = ( 𝑥 ∈ ℝ* ( 𝐶 ·e 𝑥 ) = 𝐴 ) )
4 3 eqeq1d ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 /𝑒 𝐶 ) = 𝐵 ↔ ( 𝑥 ∈ ℝ* ( 𝐶 ·e 𝑥 ) = 𝐴 ) = 𝐵 ) )
5 simp2 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0 ) ) → 𝐵 ∈ ℝ* )
6 xreceu ( ( 𝐴 ∈ ℝ*𝐶 ∈ ℝ ∧ 𝐶 ≠ 0 ) → ∃! 𝑥 ∈ ℝ* ( 𝐶 ·e 𝑥 ) = 𝐴 )
7 6 3expb ( ( 𝐴 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0 ) ) → ∃! 𝑥 ∈ ℝ* ( 𝐶 ·e 𝑥 ) = 𝐴 )
8 7 3adant2 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0 ) ) → ∃! 𝑥 ∈ ℝ* ( 𝐶 ·e 𝑥 ) = 𝐴 )
9 oveq2 ( 𝑥 = 𝐵 → ( 𝐶 ·e 𝑥 ) = ( 𝐶 ·e 𝐵 ) )
10 9 eqeq1d ( 𝑥 = 𝐵 → ( ( 𝐶 ·e 𝑥 ) = 𝐴 ↔ ( 𝐶 ·e 𝐵 ) = 𝐴 ) )
11 10 riota2 ( ( 𝐵 ∈ ℝ* ∧ ∃! 𝑥 ∈ ℝ* ( 𝐶 ·e 𝑥 ) = 𝐴 ) → ( ( 𝐶 ·e 𝐵 ) = 𝐴 ↔ ( 𝑥 ∈ ℝ* ( 𝐶 ·e 𝑥 ) = 𝐴 ) = 𝐵 ) )
12 5 8 11 syl2anc ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐶 ·e 𝐵 ) = 𝐴 ↔ ( 𝑥 ∈ ℝ* ( 𝐶 ·e 𝑥 ) = 𝐴 ) = 𝐵 ) )
13 4 12 bitr4d ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 /𝑒 𝐶 ) = 𝐵 ↔ ( 𝐶 ·e 𝐵 ) = 𝐴 ) )