Step |
Hyp |
Ref |
Expression |
1 |
|
xdivval |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0 ) → ( 𝐴 /𝑒 𝐶 ) = ( ℩ 𝑥 ∈ ℝ* ( 𝐶 ·e 𝑥 ) = 𝐴 ) ) |
2 |
1
|
3expb |
⊢ ( ( 𝐴 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0 ) ) → ( 𝐴 /𝑒 𝐶 ) = ( ℩ 𝑥 ∈ ℝ* ( 𝐶 ·e 𝑥 ) = 𝐴 ) ) |
3 |
2
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0 ) ) → ( 𝐴 /𝑒 𝐶 ) = ( ℩ 𝑥 ∈ ℝ* ( 𝐶 ·e 𝑥 ) = 𝐴 ) ) |
4 |
3
|
eqeq1d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 /𝑒 𝐶 ) = 𝐵 ↔ ( ℩ 𝑥 ∈ ℝ* ( 𝐶 ·e 𝑥 ) = 𝐴 ) = 𝐵 ) ) |
5 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0 ) ) → 𝐵 ∈ ℝ* ) |
6 |
|
xreceu |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0 ) → ∃! 𝑥 ∈ ℝ* ( 𝐶 ·e 𝑥 ) = 𝐴 ) |
7 |
6
|
3expb |
⊢ ( ( 𝐴 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0 ) ) → ∃! 𝑥 ∈ ℝ* ( 𝐶 ·e 𝑥 ) = 𝐴 ) |
8 |
7
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0 ) ) → ∃! 𝑥 ∈ ℝ* ( 𝐶 ·e 𝑥 ) = 𝐴 ) |
9 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐶 ·e 𝑥 ) = ( 𝐶 ·e 𝐵 ) ) |
10 |
9
|
eqeq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐶 ·e 𝑥 ) = 𝐴 ↔ ( 𝐶 ·e 𝐵 ) = 𝐴 ) ) |
11 |
10
|
riota2 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ ∃! 𝑥 ∈ ℝ* ( 𝐶 ·e 𝑥 ) = 𝐴 ) → ( ( 𝐶 ·e 𝐵 ) = 𝐴 ↔ ( ℩ 𝑥 ∈ ℝ* ( 𝐶 ·e 𝑥 ) = 𝐴 ) = 𝐵 ) ) |
12 |
5 8 11
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐶 ·e 𝐵 ) = 𝐴 ↔ ( ℩ 𝑥 ∈ ℝ* ( 𝐶 ·e 𝑥 ) = 𝐴 ) = 𝐵 ) ) |
13 |
4 12
|
bitr4d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 /𝑒 𝐶 ) = 𝐵 ↔ ( 𝐶 ·e 𝐵 ) = 𝐴 ) ) |