| Step |
Hyp |
Ref |
Expression |
| 1 |
|
redivcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
| 2 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 3 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
| 4 |
|
id |
⊢ ( 𝐵 ≠ 0 → 𝐵 ≠ 0 ) |
| 5 |
2 3 4
|
3anim123i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
| 6 |
|
divcan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐵 · ( 𝐴 / 𝐵 ) ) = 𝐴 ) |
| 7 |
5 6
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐵 · ( 𝐴 / 𝐵 ) ) = 𝐴 ) |
| 8 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝐴 / 𝐵 ) → ( 𝐵 · 𝑥 ) = ( 𝐵 · ( 𝐴 / 𝐵 ) ) ) |
| 9 |
8
|
eqeq1d |
⊢ ( 𝑥 = ( 𝐴 / 𝐵 ) → ( ( 𝐵 · 𝑥 ) = 𝐴 ↔ ( 𝐵 · ( 𝐴 / 𝐵 ) ) = 𝐴 ) ) |
| 10 |
9
|
rspcev |
⊢ ( ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ ( 𝐵 · ( 𝐴 / 𝐵 ) ) = 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝐵 · 𝑥 ) = 𝐴 ) |
| 11 |
1 7 10
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ∃ 𝑥 ∈ ℝ ( 𝐵 · 𝑥 ) = 𝐴 ) |
| 12 |
|
receu |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ∃! 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) |
| 13 |
5 12
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ∃! 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) |
| 14 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 15 |
|
id |
⊢ ( ( 𝐵 · 𝑥 ) = 𝐴 → ( 𝐵 · 𝑥 ) = 𝐴 ) |
| 16 |
15
|
rgenw |
⊢ ∀ 𝑥 ∈ ℝ ( ( 𝐵 · 𝑥 ) = 𝐴 → ( 𝐵 · 𝑥 ) = 𝐴 ) |
| 17 |
|
riotass2 |
⊢ ( ( ( ℝ ⊆ ℂ ∧ ∀ 𝑥 ∈ ℝ ( ( 𝐵 · 𝑥 ) = 𝐴 → ( 𝐵 · 𝑥 ) = 𝐴 ) ) ∧ ( ∃ 𝑥 ∈ ℝ ( 𝐵 · 𝑥 ) = 𝐴 ∧ ∃! 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) ) → ( ℩ 𝑥 ∈ ℝ ( 𝐵 · 𝑥 ) = 𝐴 ) = ( ℩ 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) ) |
| 18 |
14 16 17
|
mpanl12 |
⊢ ( ( ∃ 𝑥 ∈ ℝ ( 𝐵 · 𝑥 ) = 𝐴 ∧ ∃! 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) → ( ℩ 𝑥 ∈ ℝ ( 𝐵 · 𝑥 ) = 𝐴 ) = ( ℩ 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) ) |
| 19 |
11 13 18
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( ℩ 𝑥 ∈ ℝ ( 𝐵 · 𝑥 ) = 𝐴 ) = ( ℩ 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) ) |
| 20 |
|
rexr |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) |
| 21 |
|
xdivval |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐴 /𝑒 𝐵 ) = ( ℩ 𝑥 ∈ ℝ* ( 𝐵 ·e 𝑥 ) = 𝐴 ) ) |
| 22 |
20 21
|
syl3an1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐴 /𝑒 𝐵 ) = ( ℩ 𝑥 ∈ ℝ* ( 𝐵 ·e 𝑥 ) = 𝐴 ) ) |
| 23 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 24 |
23
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ℝ ⊆ ℝ* ) |
| 25 |
|
rexmul |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝐵 ·e 𝑥 ) = ( 𝐵 · 𝑥 ) ) |
| 26 |
25
|
eqeq1d |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 𝐵 ·e 𝑥 ) = 𝐴 ↔ ( 𝐵 · 𝑥 ) = 𝐴 ) ) |
| 27 |
26
|
biimprd |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 𝐵 · 𝑥 ) = 𝐴 → ( 𝐵 ·e 𝑥 ) = 𝐴 ) ) |
| 28 |
27
|
ralrimiva |
⊢ ( 𝐵 ∈ ℝ → ∀ 𝑥 ∈ ℝ ( ( 𝐵 · 𝑥 ) = 𝐴 → ( 𝐵 ·e 𝑥 ) = 𝐴 ) ) |
| 29 |
28
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ∀ 𝑥 ∈ ℝ ( ( 𝐵 · 𝑥 ) = 𝐴 → ( 𝐵 ·e 𝑥 ) = 𝐴 ) ) |
| 30 |
|
xreceu |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ∃! 𝑥 ∈ ℝ* ( 𝐵 ·e 𝑥 ) = 𝐴 ) |
| 31 |
20 30
|
syl3an1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ∃! 𝑥 ∈ ℝ* ( 𝐵 ·e 𝑥 ) = 𝐴 ) |
| 32 |
|
riotass2 |
⊢ ( ( ( ℝ ⊆ ℝ* ∧ ∀ 𝑥 ∈ ℝ ( ( 𝐵 · 𝑥 ) = 𝐴 → ( 𝐵 ·e 𝑥 ) = 𝐴 ) ) ∧ ( ∃ 𝑥 ∈ ℝ ( 𝐵 · 𝑥 ) = 𝐴 ∧ ∃! 𝑥 ∈ ℝ* ( 𝐵 ·e 𝑥 ) = 𝐴 ) ) → ( ℩ 𝑥 ∈ ℝ ( 𝐵 · 𝑥 ) = 𝐴 ) = ( ℩ 𝑥 ∈ ℝ* ( 𝐵 ·e 𝑥 ) = 𝐴 ) ) |
| 33 |
24 29 11 31 32
|
syl22anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( ℩ 𝑥 ∈ ℝ ( 𝐵 · 𝑥 ) = 𝐴 ) = ( ℩ 𝑥 ∈ ℝ* ( 𝐵 ·e 𝑥 ) = 𝐴 ) ) |
| 34 |
22 33
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐴 /𝑒 𝐵 ) = ( ℩ 𝑥 ∈ ℝ ( 𝐵 · 𝑥 ) = 𝐴 ) ) |
| 35 |
|
divval |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) = ( ℩ 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) ) |
| 36 |
5 35
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) = ( ℩ 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) ) |
| 37 |
19 34 36
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐴 /𝑒 𝐵 ) = ( 𝐴 / 𝐵 ) ) |