Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ·e 𝐵 ) = ( 𝐴 ·e 𝐵 ) ) |
2 |
1
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) = ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) ) |
3 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
4 |
2 3
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ↔ ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) ) |
5 |
|
oveq1 |
⊢ ( 𝑥 = -𝑒 𝐴 → ( 𝑥 ·e 𝐵 ) = ( -𝑒 𝐴 ·e 𝐵 ) ) |
6 |
5
|
oveq1d |
⊢ ( 𝑥 = -𝑒 𝐴 → ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) = ( ( -𝑒 𝐴 ·e 𝐵 ) ·e 𝐶 ) ) |
7 |
|
oveq1 |
⊢ ( 𝑥 = -𝑒 𝐴 → ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) = ( -𝑒 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
8 |
6 7
|
eqeq12d |
⊢ ( 𝑥 = -𝑒 𝐴 → ( ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ↔ ( ( -𝑒 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( -𝑒 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) ) |
9 |
|
xmulcl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ·e 𝐵 ) ∈ ℝ* ) |
10 |
|
xmulcl |
⊢ ( ( ( 𝐴 ·e 𝐵 ) ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) ∈ ℝ* ) |
11 |
9 10
|
stoic3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) ∈ ℝ* ) |
12 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → 𝐴 ∈ ℝ* ) |
13 |
|
xmulcl |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) |
14 |
13
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) |
15 |
|
xmulcl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) → ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ∈ ℝ* ) |
16 |
12 14 15
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ∈ ℝ* ) |
17 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝑥 ·e 𝑦 ) = ( 𝑥 ·e 𝐵 ) ) |
18 |
17
|
oveq1d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) = ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) ) |
19 |
|
oveq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ·e 𝐶 ) = ( 𝐵 ·e 𝐶 ) ) |
20 |
19
|
oveq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) = ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ) |
21 |
18 20
|
eqeq12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ↔ ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ) ) |
22 |
|
oveq2 |
⊢ ( 𝑦 = -𝑒 𝐵 → ( 𝑥 ·e 𝑦 ) = ( 𝑥 ·e -𝑒 𝐵 ) ) |
23 |
22
|
oveq1d |
⊢ ( 𝑦 = -𝑒 𝐵 → ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) = ( ( 𝑥 ·e -𝑒 𝐵 ) ·e 𝐶 ) ) |
24 |
|
oveq1 |
⊢ ( 𝑦 = -𝑒 𝐵 → ( 𝑦 ·e 𝐶 ) = ( -𝑒 𝐵 ·e 𝐶 ) ) |
25 |
24
|
oveq2d |
⊢ ( 𝑦 = -𝑒 𝐵 → ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) = ( 𝑥 ·e ( -𝑒 𝐵 ·e 𝐶 ) ) ) |
26 |
23 25
|
eqeq12d |
⊢ ( 𝑦 = -𝑒 𝐵 → ( ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ↔ ( ( 𝑥 ·e -𝑒 𝐵 ) ·e 𝐶 ) = ( 𝑥 ·e ( -𝑒 𝐵 ·e 𝐶 ) ) ) ) |
27 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → 𝑥 ∈ ℝ* ) |
28 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → 𝐵 ∈ ℝ* ) |
29 |
|
xmulcl |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑥 ·e 𝐵 ) ∈ ℝ* ) |
30 |
27 28 29
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 𝑥 ·e 𝐵 ) ∈ ℝ* ) |
31 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → 𝐶 ∈ ℝ* ) |
32 |
|
xmulcl |
⊢ ( ( ( 𝑥 ·e 𝐵 ) ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) ∈ ℝ* ) |
33 |
30 31 32
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) ∈ ℝ* ) |
34 |
14
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) |
35 |
|
xmulcl |
⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) → ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ∈ ℝ* ) |
36 |
27 34 35
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ∈ ℝ* ) |
37 |
|
oveq2 |
⊢ ( 𝑧 = 𝐶 → ( ( 𝑥 ·e 𝑦 ) ·e 𝑧 ) = ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) ) |
38 |
|
oveq2 |
⊢ ( 𝑧 = 𝐶 → ( 𝑦 ·e 𝑧 ) = ( 𝑦 ·e 𝐶 ) ) |
39 |
38
|
oveq2d |
⊢ ( 𝑧 = 𝐶 → ( 𝑥 ·e ( 𝑦 ·e 𝑧 ) ) = ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ) |
40 |
37 39
|
eqeq12d |
⊢ ( 𝑧 = 𝐶 → ( ( ( 𝑥 ·e 𝑦 ) ·e 𝑧 ) = ( 𝑥 ·e ( 𝑦 ·e 𝑧 ) ) ↔ ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ) ) |
41 |
|
oveq2 |
⊢ ( 𝑧 = -𝑒 𝐶 → ( ( 𝑥 ·e 𝑦 ) ·e 𝑧 ) = ( ( 𝑥 ·e 𝑦 ) ·e -𝑒 𝐶 ) ) |
42 |
|
oveq2 |
⊢ ( 𝑧 = -𝑒 𝐶 → ( 𝑦 ·e 𝑧 ) = ( 𝑦 ·e -𝑒 𝐶 ) ) |
43 |
42
|
oveq2d |
⊢ ( 𝑧 = -𝑒 𝐶 → ( 𝑥 ·e ( 𝑦 ·e 𝑧 ) ) = ( 𝑥 ·e ( 𝑦 ·e -𝑒 𝐶 ) ) ) |
44 |
41 43
|
eqeq12d |
⊢ ( 𝑧 = -𝑒 𝐶 → ( ( ( 𝑥 ·e 𝑦 ) ·e 𝑧 ) = ( 𝑥 ·e ( 𝑦 ·e 𝑧 ) ) ↔ ( ( 𝑥 ·e 𝑦 ) ·e -𝑒 𝐶 ) = ( 𝑥 ·e ( 𝑦 ·e -𝑒 𝐶 ) ) ) ) |
45 |
27
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → 𝑥 ∈ ℝ* ) |
46 |
|
simprl |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → 𝑦 ∈ ℝ* ) |
47 |
|
xmulcl |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 ·e 𝑦 ) ∈ ℝ* ) |
48 |
45 46 47
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( 𝑥 ·e 𝑦 ) ∈ ℝ* ) |
49 |
31
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → 𝐶 ∈ ℝ* ) |
50 |
|
xmulcl |
⊢ ( ( ( 𝑥 ·e 𝑦 ) ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) ∈ ℝ* ) |
51 |
48 49 50
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) ∈ ℝ* ) |
52 |
|
xmulcl |
⊢ ( ( 𝑦 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝑦 ·e 𝐶 ) ∈ ℝ* ) |
53 |
46 49 52
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( 𝑦 ·e 𝐶 ) ∈ ℝ* ) |
54 |
|
xmulcl |
⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝑦 ·e 𝐶 ) ∈ ℝ* ) → ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ∈ ℝ* ) |
55 |
45 53 54
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ∈ ℝ* ) |
56 |
|
xmulasslem3 |
⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ∧ ( 𝑧 ∈ ℝ* ∧ 0 < 𝑧 ) ) → ( ( 𝑥 ·e 𝑦 ) ·e 𝑧 ) = ( 𝑥 ·e ( 𝑦 ·e 𝑧 ) ) ) |
57 |
56
|
ad4ant234 |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) ∧ ( 𝑧 ∈ ℝ* ∧ 0 < 𝑧 ) ) → ( ( 𝑥 ·e 𝑦 ) ·e 𝑧 ) = ( 𝑥 ·e ( 𝑦 ·e 𝑧 ) ) ) |
58 |
|
xmul01 |
⊢ ( ( 𝑥 ·e 𝑦 ) ∈ ℝ* → ( ( 𝑥 ·e 𝑦 ) ·e 0 ) = 0 ) |
59 |
48 58
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( ( 𝑥 ·e 𝑦 ) ·e 0 ) = 0 ) |
60 |
|
xmul01 |
⊢ ( 𝑥 ∈ ℝ* → ( 𝑥 ·e 0 ) = 0 ) |
61 |
45 60
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( 𝑥 ·e 0 ) = 0 ) |
62 |
59 61
|
eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( ( 𝑥 ·e 𝑦 ) ·e 0 ) = ( 𝑥 ·e 0 ) ) |
63 |
|
xmul01 |
⊢ ( 𝑦 ∈ ℝ* → ( 𝑦 ·e 0 ) = 0 ) |
64 |
63
|
ad2antrl |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( 𝑦 ·e 0 ) = 0 ) |
65 |
64
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( 𝑥 ·e ( 𝑦 ·e 0 ) ) = ( 𝑥 ·e 0 ) ) |
66 |
62 65
|
eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( ( 𝑥 ·e 𝑦 ) ·e 0 ) = ( 𝑥 ·e ( 𝑦 ·e 0 ) ) ) |
67 |
|
oveq2 |
⊢ ( 𝑧 = 0 → ( ( 𝑥 ·e 𝑦 ) ·e 𝑧 ) = ( ( 𝑥 ·e 𝑦 ) ·e 0 ) ) |
68 |
|
oveq2 |
⊢ ( 𝑧 = 0 → ( 𝑦 ·e 𝑧 ) = ( 𝑦 ·e 0 ) ) |
69 |
68
|
oveq2d |
⊢ ( 𝑧 = 0 → ( 𝑥 ·e ( 𝑦 ·e 𝑧 ) ) = ( 𝑥 ·e ( 𝑦 ·e 0 ) ) ) |
70 |
67 69
|
eqeq12d |
⊢ ( 𝑧 = 0 → ( ( ( 𝑥 ·e 𝑦 ) ·e 𝑧 ) = ( 𝑥 ·e ( 𝑦 ·e 𝑧 ) ) ↔ ( ( 𝑥 ·e 𝑦 ) ·e 0 ) = ( 𝑥 ·e ( 𝑦 ·e 0 ) ) ) ) |
71 |
66 70
|
syl5ibrcom |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( 𝑧 = 0 → ( ( 𝑥 ·e 𝑦 ) ·e 𝑧 ) = ( 𝑥 ·e ( 𝑦 ·e 𝑧 ) ) ) ) |
72 |
|
xmulneg2 |
⊢ ( ( ( 𝑥 ·e 𝑦 ) ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝑥 ·e 𝑦 ) ·e -𝑒 𝐶 ) = -𝑒 ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) ) |
73 |
48 49 72
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( ( 𝑥 ·e 𝑦 ) ·e -𝑒 𝐶 ) = -𝑒 ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) ) |
74 |
|
xmulneg2 |
⊢ ( ( 𝑦 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝑦 ·e -𝑒 𝐶 ) = -𝑒 ( 𝑦 ·e 𝐶 ) ) |
75 |
46 49 74
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( 𝑦 ·e -𝑒 𝐶 ) = -𝑒 ( 𝑦 ·e 𝐶 ) ) |
76 |
75
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( 𝑥 ·e ( 𝑦 ·e -𝑒 𝐶 ) ) = ( 𝑥 ·e -𝑒 ( 𝑦 ·e 𝐶 ) ) ) |
77 |
|
xmulneg2 |
⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝑦 ·e 𝐶 ) ∈ ℝ* ) → ( 𝑥 ·e -𝑒 ( 𝑦 ·e 𝐶 ) ) = -𝑒 ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ) |
78 |
45 53 77
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( 𝑥 ·e -𝑒 ( 𝑦 ·e 𝐶 ) ) = -𝑒 ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ) |
79 |
76 78
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( 𝑥 ·e ( 𝑦 ·e -𝑒 𝐶 ) ) = -𝑒 ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ) |
80 |
40 44 51 55 49 57 71 73 79
|
xmulasslem |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ) |
81 |
|
xmul02 |
⊢ ( 𝐶 ∈ ℝ* → ( 0 ·e 𝐶 ) = 0 ) |
82 |
81
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 0 ·e 𝐶 ) = 0 ) |
83 |
82
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 0 ·e 𝐶 ) = 0 ) |
84 |
60
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 𝑥 ·e 0 ) = 0 ) |
85 |
83 84
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 0 ·e 𝐶 ) = ( 𝑥 ·e 0 ) ) |
86 |
84
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( ( 𝑥 ·e 0 ) ·e 𝐶 ) = ( 0 ·e 𝐶 ) ) |
87 |
83
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 𝑥 ·e ( 0 ·e 𝐶 ) ) = ( 𝑥 ·e 0 ) ) |
88 |
85 86 87
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( ( 𝑥 ·e 0 ) ·e 𝐶 ) = ( 𝑥 ·e ( 0 ·e 𝐶 ) ) ) |
89 |
|
oveq2 |
⊢ ( 𝑦 = 0 → ( 𝑥 ·e 𝑦 ) = ( 𝑥 ·e 0 ) ) |
90 |
89
|
oveq1d |
⊢ ( 𝑦 = 0 → ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) = ( ( 𝑥 ·e 0 ) ·e 𝐶 ) ) |
91 |
|
oveq1 |
⊢ ( 𝑦 = 0 → ( 𝑦 ·e 𝐶 ) = ( 0 ·e 𝐶 ) ) |
92 |
91
|
oveq2d |
⊢ ( 𝑦 = 0 → ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) = ( 𝑥 ·e ( 0 ·e 𝐶 ) ) ) |
93 |
90 92
|
eqeq12d |
⊢ ( 𝑦 = 0 → ( ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ↔ ( ( 𝑥 ·e 0 ) ·e 𝐶 ) = ( 𝑥 ·e ( 0 ·e 𝐶 ) ) ) ) |
94 |
88 93
|
syl5ibrcom |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 𝑦 = 0 → ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ) ) |
95 |
|
xmulneg2 |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑥 ·e -𝑒 𝐵 ) = -𝑒 ( 𝑥 ·e 𝐵 ) ) |
96 |
27 28 95
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 𝑥 ·e -𝑒 𝐵 ) = -𝑒 ( 𝑥 ·e 𝐵 ) ) |
97 |
96
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( ( 𝑥 ·e -𝑒 𝐵 ) ·e 𝐶 ) = ( -𝑒 ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) ) |
98 |
|
xmulneg1 |
⊢ ( ( ( 𝑥 ·e 𝐵 ) ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( -𝑒 ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) = -𝑒 ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) ) |
99 |
30 31 98
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( -𝑒 ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) = -𝑒 ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) ) |
100 |
97 99
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( ( 𝑥 ·e -𝑒 𝐵 ) ·e 𝐶 ) = -𝑒 ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) ) |
101 |
|
xmulneg1 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( -𝑒 𝐵 ·e 𝐶 ) = -𝑒 ( 𝐵 ·e 𝐶 ) ) |
102 |
28 31 101
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( -𝑒 𝐵 ·e 𝐶 ) = -𝑒 ( 𝐵 ·e 𝐶 ) ) |
103 |
102
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 𝑥 ·e ( -𝑒 𝐵 ·e 𝐶 ) ) = ( 𝑥 ·e -𝑒 ( 𝐵 ·e 𝐶 ) ) ) |
104 |
|
xmulneg2 |
⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) → ( 𝑥 ·e -𝑒 ( 𝐵 ·e 𝐶 ) ) = -𝑒 ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ) |
105 |
27 34 104
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 𝑥 ·e -𝑒 ( 𝐵 ·e 𝐶 ) ) = -𝑒 ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ) |
106 |
103 105
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 𝑥 ·e ( -𝑒 𝐵 ·e 𝐶 ) ) = -𝑒 ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ) |
107 |
21 26 33 36 28 80 94 100 106
|
xmulasslem |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ) |
108 |
|
xmul02 |
⊢ ( 𝐵 ∈ ℝ* → ( 0 ·e 𝐵 ) = 0 ) |
109 |
108
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 0 ·e 𝐵 ) = 0 ) |
110 |
109
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 0 ·e 𝐵 ) ·e 𝐶 ) = ( 0 ·e 𝐶 ) ) |
111 |
|
xmul02 |
⊢ ( ( 𝐵 ·e 𝐶 ) ∈ ℝ* → ( 0 ·e ( 𝐵 ·e 𝐶 ) ) = 0 ) |
112 |
14 111
|
syl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 0 ·e ( 𝐵 ·e 𝐶 ) ) = 0 ) |
113 |
82 110 112
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 0 ·e 𝐵 ) ·e 𝐶 ) = ( 0 ·e ( 𝐵 ·e 𝐶 ) ) ) |
114 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ·e 𝐵 ) = ( 0 ·e 𝐵 ) ) |
115 |
114
|
oveq1d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) = ( ( 0 ·e 𝐵 ) ·e 𝐶 ) ) |
116 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) = ( 0 ·e ( 𝐵 ·e 𝐶 ) ) ) |
117 |
115 116
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ↔ ( ( 0 ·e 𝐵 ) ·e 𝐶 ) = ( 0 ·e ( 𝐵 ·e 𝐶 ) ) ) ) |
118 |
113 117
|
syl5ibrcom |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝑥 = 0 → ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ) ) |
119 |
|
xmulneg1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( -𝑒 𝐴 ·e 𝐵 ) = -𝑒 ( 𝐴 ·e 𝐵 ) ) |
120 |
119
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( -𝑒 𝐴 ·e 𝐵 ) = -𝑒 ( 𝐴 ·e 𝐵 ) ) |
121 |
120
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( -𝑒 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( -𝑒 ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) ) |
122 |
|
xmulneg1 |
⊢ ( ( ( 𝐴 ·e 𝐵 ) ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( -𝑒 ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = -𝑒 ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) ) |
123 |
9 122
|
stoic3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( -𝑒 ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = -𝑒 ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) ) |
124 |
121 123
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( -𝑒 𝐴 ·e 𝐵 ) ·e 𝐶 ) = -𝑒 ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) ) |
125 |
|
xmulneg1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) → ( -𝑒 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) = -𝑒 ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
126 |
12 14 125
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( -𝑒 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) = -𝑒 ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
127 |
4 8 11 16 12 107 118 124 126
|
xmulasslem |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |