| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xmulneg1 | ⊢ ( ( 𝐵  ∈  ℝ*  ∧  𝐴  ∈  ℝ* )  →  ( -𝑒 𝐵  ·e  𝐴 )  =  -𝑒 ( 𝐵  ·e  𝐴 ) ) | 
						
							| 2 | 1 | ancoms | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( -𝑒 𝐵  ·e  𝐴 )  =  -𝑒 ( 𝐵  ·e  𝐴 ) ) | 
						
							| 3 |  | xnegcl | ⊢ ( 𝐵  ∈  ℝ*  →  -𝑒 𝐵  ∈  ℝ* ) | 
						
							| 4 |  | xmulcom | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  -𝑒 𝐵  ∈  ℝ* )  →  ( 𝐴  ·e  -𝑒 𝐵 )  =  ( -𝑒 𝐵  ·e  𝐴 ) ) | 
						
							| 5 | 3 4 | sylan2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐴  ·e  -𝑒 𝐵 )  =  ( -𝑒 𝐵  ·e  𝐴 ) ) | 
						
							| 6 |  | xmulcom | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐴  ·e  𝐵 )  =  ( 𝐵  ·e  𝐴 ) ) | 
						
							| 7 |  | xnegeq | ⊢ ( ( 𝐴  ·e  𝐵 )  =  ( 𝐵  ·e  𝐴 )  →  -𝑒 ( 𝐴  ·e  𝐵 )  =  -𝑒 ( 𝐵  ·e  𝐴 ) ) | 
						
							| 8 | 6 7 | syl | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  -𝑒 ( 𝐴  ·e  𝐵 )  =  -𝑒 ( 𝐵  ·e  𝐴 ) ) | 
						
							| 9 | 2 5 8 | 3eqtr4d | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐴  ·e  -𝑒 𝐵 )  =  -𝑒 ( 𝐴  ·e  𝐵 ) ) |