Step |
Hyp |
Ref |
Expression |
1 |
|
xmulneg1 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( -𝑒 𝐵 ·e 𝐴 ) = -𝑒 ( 𝐵 ·e 𝐴 ) ) |
2 |
1
|
ancoms |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( -𝑒 𝐵 ·e 𝐴 ) = -𝑒 ( 𝐵 ·e 𝐴 ) ) |
3 |
|
xnegcl |
⊢ ( 𝐵 ∈ ℝ* → -𝑒 𝐵 ∈ ℝ* ) |
4 |
|
xmulcom |
⊢ ( ( 𝐴 ∈ ℝ* ∧ -𝑒 𝐵 ∈ ℝ* ) → ( 𝐴 ·e -𝑒 𝐵 ) = ( -𝑒 𝐵 ·e 𝐴 ) ) |
5 |
3 4
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ·e -𝑒 𝐵 ) = ( -𝑒 𝐵 ·e 𝐴 ) ) |
6 |
|
xmulcom |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ·e 𝐵 ) = ( 𝐵 ·e 𝐴 ) ) |
7 |
|
xnegeq |
⊢ ( ( 𝐴 ·e 𝐵 ) = ( 𝐵 ·e 𝐴 ) → -𝑒 ( 𝐴 ·e 𝐵 ) = -𝑒 ( 𝐵 ·e 𝐴 ) ) |
8 |
6 7
|
syl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → -𝑒 ( 𝐴 ·e 𝐵 ) = -𝑒 ( 𝐵 ·e 𝐴 ) ) |
9 |
2 5 8
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ·e -𝑒 𝐵 ) = -𝑒 ( 𝐴 ·e 𝐵 ) ) |