Step |
Hyp |
Ref |
Expression |
1 |
|
xneg0 |
⊢ -𝑒 0 = 0 |
2 |
1
|
eqeq2i |
⊢ ( -𝑒 𝐴 = -𝑒 0 ↔ -𝑒 𝐴 = 0 ) |
3 |
|
0xr |
⊢ 0 ∈ ℝ* |
4 |
|
xneg11 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( -𝑒 𝐴 = -𝑒 0 ↔ 𝐴 = 0 ) ) |
5 |
3 4
|
mpan2 |
⊢ ( 𝐴 ∈ ℝ* → ( -𝑒 𝐴 = -𝑒 0 ↔ 𝐴 = 0 ) ) |
6 |
2 5
|
bitr3id |
⊢ ( 𝐴 ∈ ℝ* → ( -𝑒 𝐴 = 0 ↔ 𝐴 = 0 ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( -𝑒 𝐴 = 0 ↔ 𝐴 = 0 ) ) |
8 |
7
|
orbi1d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( -𝑒 𝐴 = 0 ∨ 𝐵 = 0 ) ↔ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ) |
9 |
8
|
ifbid |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → if ( ( -𝑒 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) ) = if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) ) ) |
10 |
|
xnegpnf |
⊢ -𝑒 +∞ = -∞ |
11 |
10
|
eqeq2i |
⊢ ( -𝑒 𝐴 = -𝑒 +∞ ↔ -𝑒 𝐴 = -∞ ) |
12 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → 𝐴 ∈ ℝ* ) |
13 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
14 |
|
xneg11 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( -𝑒 𝐴 = -𝑒 +∞ ↔ 𝐴 = +∞ ) ) |
15 |
12 13 14
|
sylancl |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( -𝑒 𝐴 = -𝑒 +∞ ↔ 𝐴 = +∞ ) ) |
16 |
11 15
|
bitr3id |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( -𝑒 𝐴 = -∞ ↔ 𝐴 = +∞ ) ) |
17 |
16
|
anbi2d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ↔ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ) ) |
18 |
|
xnegmnf |
⊢ -𝑒 -∞ = +∞ |
19 |
18
|
eqeq2i |
⊢ ( -𝑒 𝐴 = -𝑒 -∞ ↔ -𝑒 𝐴 = +∞ ) |
20 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
21 |
|
xneg11 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ -∞ ∈ ℝ* ) → ( -𝑒 𝐴 = -𝑒 -∞ ↔ 𝐴 = -∞ ) ) |
22 |
12 20 21
|
sylancl |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( -𝑒 𝐴 = -𝑒 -∞ ↔ 𝐴 = -∞ ) ) |
23 |
19 22
|
bitr3id |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( -𝑒 𝐴 = +∞ ↔ 𝐴 = -∞ ) ) |
24 |
23
|
anbi2d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ↔ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ) |
25 |
17 24
|
orbi12d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ↔ ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ) ) |
26 |
|
xlt0neg1 |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 < 0 ↔ 0 < -𝑒 𝐴 ) ) |
27 |
26
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( 𝐴 < 0 ↔ 0 < -𝑒 𝐴 ) ) |
28 |
27
|
bicomd |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( 0 < -𝑒 𝐴 ↔ 𝐴 < 0 ) ) |
29 |
28
|
anbi1d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ↔ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) |
30 |
|
xlt0neg2 |
⊢ ( 𝐴 ∈ ℝ* → ( 0 < 𝐴 ↔ -𝑒 𝐴 < 0 ) ) |
31 |
30
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( 0 < 𝐴 ↔ -𝑒 𝐴 < 0 ) ) |
32 |
31
|
bicomd |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( -𝑒 𝐴 < 0 ↔ 0 < 𝐴 ) ) |
33 |
32
|
anbi1d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ↔ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ) |
34 |
29 33
|
orbi12d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ↔ ( ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ) ) |
35 |
|
orcom |
⊢ ( ( ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ↔ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) |
36 |
34 35
|
bitrdi |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ↔ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) |
37 |
25 36
|
orbi12d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ↔ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ) |
38 |
37
|
biimpar |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) → ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) |
39 |
38
|
iftrued |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) = -∞ ) |
40 |
|
xmullem2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) |
41 |
40
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) |
42 |
23
|
anbi2d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ↔ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ) ) |
43 |
16
|
anbi2d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ↔ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ) |
44 |
42 43
|
orbi12d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ↔ ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ) ) |
45 |
28
|
anbi1d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ↔ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) |
46 |
32
|
anbi1d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ↔ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ) ) |
47 |
45 46
|
orbi12d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ↔ ( ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ) ) ) |
48 |
|
orcom |
⊢ ( ( ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ) ↔ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) |
49 |
47 48
|
bitrdi |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ↔ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) |
50 |
44 49
|
orbi12d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ↔ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) |
51 |
50
|
notbid |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ¬ ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ↔ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) |
52 |
41 51
|
sylibrd |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ¬ ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ) |
53 |
52
|
imp |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) → ¬ ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) |
54 |
53
|
iffalsed |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) = if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) |
55 |
|
iftrue |
⊢ ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = +∞ ) |
56 |
55
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = +∞ ) |
57 |
|
xnegeq |
⊢ ( if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = +∞ → -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = -𝑒 +∞ ) |
58 |
56 57
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) → -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = -𝑒 +∞ ) |
59 |
58 10
|
eqtrdi |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) → -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = -∞ ) |
60 |
39 54 59
|
3eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) = -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) |
61 |
50
|
biimpar |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) |
62 |
61
|
iftrued |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) = +∞ ) |
63 |
41
|
con2d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) → ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ) |
64 |
63
|
imp |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) |
65 |
64
|
iffalsed |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) |
66 |
|
iftrue |
⊢ ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) = -∞ ) |
67 |
66
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) = -∞ ) |
68 |
65 67
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = -∞ ) |
69 |
|
xnegeq |
⊢ ( if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = -∞ → -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = -𝑒 -∞ ) |
70 |
68 69
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = -𝑒 -∞ ) |
71 |
70 18
|
eqtrdi |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = +∞ ) |
72 |
62 71
|
eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) = -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) |
73 |
72
|
adantlr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) = -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) |
74 |
37
|
notbid |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( ¬ ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ↔ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ) |
75 |
74
|
biimpar |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) → ¬ ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) |
76 |
75
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → ¬ ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) |
77 |
76
|
iffalsed |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) = ( -𝑒 𝐴 · 𝐵 ) ) |
78 |
51
|
biimpar |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → ¬ ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) |
79 |
78
|
adantlr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → ¬ ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) |
80 |
79
|
iffalsed |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) = if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) |
81 |
|
iffalse |
⊢ ( ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) |
82 |
81
|
ad2antlr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) |
83 |
|
iffalse |
⊢ ( ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) = ( 𝐴 · 𝐵 ) ) |
84 |
83
|
adantl |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) = ( 𝐴 · 𝐵 ) ) |
85 |
82 84
|
eqtrd |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = ( 𝐴 · 𝐵 ) ) |
86 |
|
xnegeq |
⊢ ( if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = ( 𝐴 · 𝐵 ) → -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = -𝑒 ( 𝐴 · 𝐵 ) ) |
87 |
85 86
|
syl |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = -𝑒 ( 𝐴 · 𝐵 ) ) |
88 |
|
xmullem |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → 𝐴 ∈ ℝ ) |
89 |
88
|
recnd |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → 𝐴 ∈ ℂ ) |
90 |
|
ancom |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ↔ ( 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) ) |
91 |
|
orcom |
⊢ ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) ↔ ( 𝐵 = 0 ∨ 𝐴 = 0 ) ) |
92 |
91
|
notbii |
⊢ ( ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ↔ ¬ ( 𝐵 = 0 ∨ 𝐴 = 0 ) ) |
93 |
90 92
|
anbi12i |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ↔ ( ( 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) ∧ ¬ ( 𝐵 = 0 ∨ 𝐴 = 0 ) ) ) |
94 |
|
orcom |
⊢ ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ↔ ( ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ∨ ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ) ) |
95 |
94
|
notbii |
⊢ ( ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ↔ ¬ ( ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ∨ ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ) ) |
96 |
93 95
|
anbi12i |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ↔ ( ( ( 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) ∧ ¬ ( 𝐵 = 0 ∨ 𝐴 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ∨ ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ) ) ) |
97 |
|
orcom |
⊢ ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ↔ ( ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ∨ ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ) ) |
98 |
97
|
notbii |
⊢ ( ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ↔ ¬ ( ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ∨ ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ) ) |
99 |
|
xmullem |
⊢ ( ( ( ( ( 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) ∧ ¬ ( 𝐵 = 0 ∨ 𝐴 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ∨ ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ∨ ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ) ) → 𝐵 ∈ ℝ ) |
100 |
96 98 99
|
syl2anb |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → 𝐵 ∈ ℝ ) |
101 |
100
|
recnd |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → 𝐵 ∈ ℂ ) |
102 |
89 101
|
mulneg1d |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → ( - 𝐴 · 𝐵 ) = - ( 𝐴 · 𝐵 ) ) |
103 |
|
rexneg |
⊢ ( 𝐴 ∈ ℝ → -𝑒 𝐴 = - 𝐴 ) |
104 |
88 103
|
syl |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → -𝑒 𝐴 = - 𝐴 ) |
105 |
104
|
oveq1d |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → ( -𝑒 𝐴 · 𝐵 ) = ( - 𝐴 · 𝐵 ) ) |
106 |
88 100
|
remulcld |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
107 |
|
rexneg |
⊢ ( ( 𝐴 · 𝐵 ) ∈ ℝ → -𝑒 ( 𝐴 · 𝐵 ) = - ( 𝐴 · 𝐵 ) ) |
108 |
106 107
|
syl |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → -𝑒 ( 𝐴 · 𝐵 ) = - ( 𝐴 · 𝐵 ) ) |
109 |
102 105 108
|
3eqtr4d |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → ( -𝑒 𝐴 · 𝐵 ) = -𝑒 ( 𝐴 · 𝐵 ) ) |
110 |
87 109
|
eqtr4d |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) = ( -𝑒 𝐴 · 𝐵 ) ) |
111 |
77 80 110
|
3eqtr4d |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) = -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) |
112 |
73 111
|
pm2.61dan |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) → if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) = -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) |
113 |
60 112
|
pm2.61dan |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) = -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) |
114 |
113
|
ifeq2da |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) ) = if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) ) |
115 |
9 114
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → if ( ( -𝑒 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) ) = if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) ) |
116 |
|
xnegeq |
⊢ ( if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) = 0 → -𝑒 if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) = -𝑒 0 ) |
117 |
116 1
|
eqtrdi |
⊢ ( if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) = 0 → -𝑒 if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) = 0 ) |
118 |
|
xnegeq |
⊢ ( if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) = if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) → -𝑒 if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) = -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) |
119 |
117 118
|
ifsb |
⊢ -𝑒 if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) = if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , -𝑒 if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) |
120 |
115 119
|
eqtr4di |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → if ( ( -𝑒 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) ) = -𝑒 if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) ) |
121 |
|
xnegcl |
⊢ ( 𝐴 ∈ ℝ* → -𝑒 𝐴 ∈ ℝ* ) |
122 |
|
xmulval |
⊢ ( ( -𝑒 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( -𝑒 𝐴 ·e 𝐵 ) = if ( ( -𝑒 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) ) ) |
123 |
121 122
|
sylan |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( -𝑒 𝐴 ·e 𝐵 ) = if ( ( -𝑒 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = -∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = +∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ -𝑒 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ -𝑒 𝐴 = +∞ ) ) ∨ ( ( 0 < -𝑒 𝐴 ∧ 𝐵 = -∞ ) ∨ ( -𝑒 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( -𝑒 𝐴 · 𝐵 ) ) ) ) ) |
124 |
|
xmulval |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ·e 𝐵 ) = if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) ) |
125 |
|
xnegeq |
⊢ ( ( 𝐴 ·e 𝐵 ) = if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) → -𝑒 ( 𝐴 ·e 𝐵 ) = -𝑒 if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) ) |
126 |
124 125
|
syl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → -𝑒 ( 𝐴 ·e 𝐵 ) = -𝑒 if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) ) |
127 |
120 123 126
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( -𝑒 𝐴 ·e 𝐵 ) = -𝑒 ( 𝐴 ·e 𝐵 ) ) |