Database
REAL AND COMPLEX NUMBERS
Order sets
Infinity and the extended real number system (cont.)
xmulneg1
Next ⟩
xmulneg2
Metamath Proof Explorer
Ascii
Unicode
Theorem
xmulneg1
Description:
Extended real version of
mulneg1
.
(Contributed by
Mario Carneiro
, 20-Aug-2015)
Ref
Expression
Assertion
xmulneg1
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
−
A
⋅
𝑒
B
=
−
A
⋅
𝑒
B
Proof
Step
Hyp
Ref
Expression
1
xneg0
⊢
−
0
=
0
2
1
eqeq2i
⊢
−
A
=
−
0
↔
−
A
=
0
3
0xr
⊢
0
∈
ℝ
*
4
xneg11
⊢
A
∈
ℝ
*
∧
0
∈
ℝ
*
→
−
A
=
−
0
↔
A
=
0
5
3
4
mpan2
⊢
A
∈
ℝ
*
→
−
A
=
−
0
↔
A
=
0
6
2
5
bitr3id
⊢
A
∈
ℝ
*
→
−
A
=
0
↔
A
=
0
7
6
adantr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
−
A
=
0
↔
A
=
0
8
7
orbi1d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
−
A
=
0
∨
B
=
0
↔
A
=
0
∨
B
=
0
9
8
ifbid
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
if
−
A
=
0
∨
B
=
0
0
if
0
<
B
∧
−
A
=
+∞
∨
B
<
0
∧
−
A
=
−∞
∨
0
<
−
A
∧
B
=
+∞
∨
−
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
−
A
=
−∞
∨
B
<
0
∧
−
A
=
+∞
∨
0
<
−
A
∧
B
=
−∞
∨
−
A
<
0
∧
B
=
+∞
−∞
−
A
B
=
if
A
=
0
∨
B
=
0
0
if
0
<
B
∧
−
A
=
+∞
∨
B
<
0
∧
−
A
=
−∞
∨
0
<
−
A
∧
B
=
+∞
∨
−
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
−
A
=
−∞
∨
B
<
0
∧
−
A
=
+∞
∨
0
<
−
A
∧
B
=
−∞
∨
−
A
<
0
∧
B
=
+∞
−∞
−
A
B
10
xnegpnf
⊢
−
+∞
=
−∞
11
10
eqeq2i
⊢
−
A
=
−
+∞
↔
−
A
=
−∞
12
simpll
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
→
A
∈
ℝ
*
13
pnfxr
⊢
+∞
∈
ℝ
*
14
xneg11
⊢
A
∈
ℝ
*
∧
+∞
∈
ℝ
*
→
−
A
=
−
+∞
↔
A
=
+∞
15
12
13
14
sylancl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
→
−
A
=
−
+∞
↔
A
=
+∞
16
11
15
bitr3id
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
→
−
A
=
−∞
↔
A
=
+∞
17
16
anbi2d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
→
0
<
B
∧
−
A
=
−∞
↔
0
<
B
∧
A
=
+∞
18
xnegmnf
⊢
−
−∞
=
+∞
19
18
eqeq2i
⊢
−
A
=
−
−∞
↔
−
A
=
+∞
20
mnfxr
⊢
−∞
∈
ℝ
*
21
xneg11
⊢
A
∈
ℝ
*
∧
−∞
∈
ℝ
*
→
−
A
=
−
−∞
↔
A
=
−∞
22
12
20
21
sylancl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
→
−
A
=
−
−∞
↔
A
=
−∞
23
19
22
bitr3id
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
→
−
A
=
+∞
↔
A
=
−∞
24
23
anbi2d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
→
B
<
0
∧
−
A
=
+∞
↔
B
<
0
∧
A
=
−∞
25
17
24
orbi12d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
→
0
<
B
∧
−
A
=
−∞
∨
B
<
0
∧
−
A
=
+∞
↔
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
26
xlt0neg1
⊢
A
∈
ℝ
*
→
A
<
0
↔
0
<
−
A
27
26
ad2antrr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
→
A
<
0
↔
0
<
−
A
28
27
bicomd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
→
0
<
−
A
↔
A
<
0
29
28
anbi1d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
→
0
<
−
A
∧
B
=
−∞
↔
A
<
0
∧
B
=
−∞
30
xlt0neg2
⊢
A
∈
ℝ
*
→
0
<
A
↔
−
A
<
0
31
30
ad2antrr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
→
0
<
A
↔
−
A
<
0
32
31
bicomd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
→
−
A
<
0
↔
0
<
A
33
32
anbi1d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
→
−
A
<
0
∧
B
=
+∞
↔
0
<
A
∧
B
=
+∞
34
29
33
orbi12d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
→
0
<
−
A
∧
B
=
−∞
∨
−
A
<
0
∧
B
=
+∞
↔
A
<
0
∧
B
=
−∞
∨
0
<
A
∧
B
=
+∞
35
orcom
⊢
A
<
0
∧
B
=
−∞
∨
0
<
A
∧
B
=
+∞
↔
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
36
34
35
bitrdi
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
→
0
<
−
A
∧
B
=
−∞
∨
−
A
<
0
∧
B
=
+∞
↔
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
37
25
36
orbi12d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
→
0
<
B
∧
−
A
=
−∞
∨
B
<
0
∧
−
A
=
+∞
∨
0
<
−
A
∧
B
=
−∞
∨
−
A
<
0
∧
B
=
+∞
↔
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
38
37
biimpar
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
→
0
<
B
∧
−
A
=
−∞
∨
B
<
0
∧
−
A
=
+∞
∨
0
<
−
A
∧
B
=
−∞
∨
−
A
<
0
∧
B
=
+∞
39
38
iftrued
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
→
if
0
<
B
∧
−
A
=
−∞
∨
B
<
0
∧
−
A
=
+∞
∨
0
<
−
A
∧
B
=
−∞
∨
−
A
<
0
∧
B
=
+∞
−∞
−
A
B
=
−∞
40
xmullem2
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
→
¬
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
41
40
adantr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
→
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
→
¬
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
42
23
anbi2d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
→
0
<
B
∧
−
A
=
+∞
↔
0
<
B
∧
A
=
−∞
43
16
anbi2d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
→
B
<
0
∧
−
A
=
−∞
↔
B
<
0
∧
A
=
+∞
44
42
43
orbi12d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
→
0
<
B
∧
−
A
=
+∞
∨
B
<
0
∧
−
A
=
−∞
↔
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
45
28
anbi1d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
→
0
<
−
A
∧
B
=
+∞
↔
A
<
0
∧
B
=
+∞
46
32
anbi1d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
→
−
A
<
0
∧
B
=
−∞
↔
0
<
A
∧
B
=
−∞
47
45
46
orbi12d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
→
0
<
−
A
∧
B
=
+∞
∨
−
A
<
0
∧
B
=
−∞
↔
A
<
0
∧
B
=
+∞
∨
0
<
A
∧
B
=
−∞
48
orcom
⊢
A
<
0
∧
B
=
+∞
∨
0
<
A
∧
B
=
−∞
↔
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
49
47
48
bitrdi
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
→
0
<
−
A
∧
B
=
+∞
∨
−
A
<
0
∧
B
=
−∞
↔
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
50
44
49
orbi12d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
→
0
<
B
∧
−
A
=
+∞
∨
B
<
0
∧
−
A
=
−∞
∨
0
<
−
A
∧
B
=
+∞
∨
−
A
<
0
∧
B
=
−∞
↔
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
51
50
notbid
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
→
¬
0
<
B
∧
−
A
=
+∞
∨
B
<
0
∧
−
A
=
−∞
∨
0
<
−
A
∧
B
=
+∞
∨
−
A
<
0
∧
B
=
−∞
↔
¬
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
52
41
51
sylibrd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
→
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
→
¬
0
<
B
∧
−
A
=
+∞
∨
B
<
0
∧
−
A
=
−∞
∨
0
<
−
A
∧
B
=
+∞
∨
−
A
<
0
∧
B
=
−∞
53
52
imp
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
→
¬
0
<
B
∧
−
A
=
+∞
∨
B
<
0
∧
−
A
=
−∞
∨
0
<
−
A
∧
B
=
+∞
∨
−
A
<
0
∧
B
=
−∞
54
53
iffalsed
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
→
if
0
<
B
∧
−
A
=
+∞
∨
B
<
0
∧
−
A
=
−∞
∨
0
<
−
A
∧
B
=
+∞
∨
−
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
−
A
=
−∞
∨
B
<
0
∧
−
A
=
+∞
∨
0
<
−
A
∧
B
=
−∞
∨
−
A
<
0
∧
B
=
+∞
−∞
−
A
B
=
if
0
<
B
∧
−
A
=
−∞
∨
B
<
0
∧
−
A
=
+∞
∨
0
<
−
A
∧
B
=
−∞
∨
−
A
<
0
∧
B
=
+∞
−∞
−
A
B
55
iftrue
⊢
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
→
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
=
+∞
56
55
adantl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
→
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
=
+∞
57
xnegeq
⊢
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
=
+∞
→
−
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
=
−
+∞
58
56
57
syl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
→
−
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
=
−
+∞
59
58
10
eqtrdi
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
→
−
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
=
−∞
60
39
54
59
3eqtr4d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
→
if
0
<
B
∧
−
A
=
+∞
∨
B
<
0
∧
−
A
=
−∞
∨
0
<
−
A
∧
B
=
+∞
∨
−
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
−
A
=
−∞
∨
B
<
0
∧
−
A
=
+∞
∨
0
<
−
A
∧
B
=
−∞
∨
−
A
<
0
∧
B
=
+∞
−∞
−
A
B
=
−
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
61
50
biimpar
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
→
0
<
B
∧
−
A
=
+∞
∨
B
<
0
∧
−
A
=
−∞
∨
0
<
−
A
∧
B
=
+∞
∨
−
A
<
0
∧
B
=
−∞
62
61
iftrued
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
→
if
0
<
B
∧
−
A
=
+∞
∨
B
<
0
∧
−
A
=
−∞
∨
0
<
−
A
∧
B
=
+∞
∨
−
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
−
A
=
−∞
∨
B
<
0
∧
−
A
=
+∞
∨
0
<
−
A
∧
B
=
−∞
∨
−
A
<
0
∧
B
=
+∞
−∞
−
A
B
=
+∞
63
41
con2d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
→
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
→
¬
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
64
63
imp
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
→
¬
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
65
64
iffalsed
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
→
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
=
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
66
iftrue
⊢
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
→
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
=
−∞
67
66
adantl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
→
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
=
−∞
68
65
67
eqtrd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
→
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
=
−∞
69
xnegeq
⊢
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
=
−∞
→
−
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
=
−
−∞
70
68
69
syl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
→
−
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
=
−
−∞
71
70
18
eqtrdi
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
→
−
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
=
+∞
72
62
71
eqtr4d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
→
if
0
<
B
∧
−
A
=
+∞
∨
B
<
0
∧
−
A
=
−∞
∨
0
<
−
A
∧
B
=
+∞
∨
−
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
−
A
=
−∞
∨
B
<
0
∧
−
A
=
+∞
∨
0
<
−
A
∧
B
=
−∞
∨
−
A
<
0
∧
B
=
+∞
−∞
−
A
B
=
−
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
73
72
adantlr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
¬
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
∧
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
→
if
0
<
B
∧
−
A
=
+∞
∨
B
<
0
∧
−
A
=
−∞
∨
0
<
−
A
∧
B
=
+∞
∨
−
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
−
A
=
−∞
∨
B
<
0
∧
−
A
=
+∞
∨
0
<
−
A
∧
B
=
−∞
∨
−
A
<
0
∧
B
=
+∞
−∞
−
A
B
=
−
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
74
37
notbid
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
→
¬
0
<
B
∧
−
A
=
−∞
∨
B
<
0
∧
−
A
=
+∞
∨
0
<
−
A
∧
B
=
−∞
∨
−
A
<
0
∧
B
=
+∞
↔
¬
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
75
74
biimpar
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
¬
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
→
¬
0
<
B
∧
−
A
=
−∞
∨
B
<
0
∧
−
A
=
+∞
∨
0
<
−
A
∧
B
=
−∞
∨
−
A
<
0
∧
B
=
+∞
76
75
adantr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
¬
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
∧
¬
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
→
¬
0
<
B
∧
−
A
=
−∞
∨
B
<
0
∧
−
A
=
+∞
∨
0
<
−
A
∧
B
=
−∞
∨
−
A
<
0
∧
B
=
+∞
77
76
iffalsed
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
¬
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
∧
¬
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
→
if
0
<
B
∧
−
A
=
−∞
∨
B
<
0
∧
−
A
=
+∞
∨
0
<
−
A
∧
B
=
−∞
∨
−
A
<
0
∧
B
=
+∞
−∞
−
A
B
=
−
A
B
78
51
biimpar
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
¬
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
→
¬
0
<
B
∧
−
A
=
+∞
∨
B
<
0
∧
−
A
=
−∞
∨
0
<
−
A
∧
B
=
+∞
∨
−
A
<
0
∧
B
=
−∞
79
78
adantlr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
¬
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
∧
¬
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
→
¬
0
<
B
∧
−
A
=
+∞
∨
B
<
0
∧
−
A
=
−∞
∨
0
<
−
A
∧
B
=
+∞
∨
−
A
<
0
∧
B
=
−∞
80
79
iffalsed
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
¬
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
∧
¬
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
→
if
0
<
B
∧
−
A
=
+∞
∨
B
<
0
∧
−
A
=
−∞
∨
0
<
−
A
∧
B
=
+∞
∨
−
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
−
A
=
−∞
∨
B
<
0
∧
−
A
=
+∞
∨
0
<
−
A
∧
B
=
−∞
∨
−
A
<
0
∧
B
=
+∞
−∞
−
A
B
=
if
0
<
B
∧
−
A
=
−∞
∨
B
<
0
∧
−
A
=
+∞
∨
0
<
−
A
∧
B
=
−∞
∨
−
A
<
0
∧
B
=
+∞
−∞
−
A
B
81
iffalse
⊢
¬
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
→
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
=
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
82
81
ad2antlr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
¬
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
∧
¬
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
→
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
=
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
83
iffalse
⊢
¬
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
→
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
=
A
B
84
83
adantl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
¬
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
∧
¬
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
→
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
=
A
B
85
82
84
eqtrd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
¬
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
∧
¬
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
→
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
=
A
B
86
xnegeq
⊢
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
=
A
B
→
−
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
=
−
A
B
87
85
86
syl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
¬
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
∧
¬
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
→
−
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
=
−
A
B
88
xmullem
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
¬
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
∧
¬
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
→
A
∈
ℝ
89
88
recnd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
¬
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
∧
¬
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
→
A
∈
ℂ
90
ancom
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
↔
B
∈
ℝ
*
∧
A
∈
ℝ
*
91
orcom
⊢
A
=
0
∨
B
=
0
↔
B
=
0
∨
A
=
0
92
91
notbii
⊢
¬
A
=
0
∨
B
=
0
↔
¬
B
=
0
∨
A
=
0
93
90
92
anbi12i
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
↔
B
∈
ℝ
*
∧
A
∈
ℝ
*
∧
¬
B
=
0
∨
A
=
0
94
orcom
⊢
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
↔
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
∨
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
95
94
notbii
⊢
¬
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
↔
¬
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
∨
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
96
93
95
anbi12i
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
¬
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
↔
B
∈
ℝ
*
∧
A
∈
ℝ
*
∧
¬
B
=
0
∨
A
=
0
∧
¬
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
∨
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
97
orcom
⊢
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
↔
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
∨
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
98
97
notbii
⊢
¬
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
↔
¬
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
∨
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
99
xmullem
⊢
B
∈
ℝ
*
∧
A
∈
ℝ
*
∧
¬
B
=
0
∨
A
=
0
∧
¬
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
∨
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∧
¬
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
∨
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
→
B
∈
ℝ
100
96
98
99
syl2anb
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
¬
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
∧
¬
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
→
B
∈
ℝ
101
100
recnd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
¬
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
∧
¬
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
→
B
∈
ℂ
102
89
101
mulneg1d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
¬
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
∧
¬
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
→
−
A
B
=
−
A
B
103
rexneg
⊢
A
∈
ℝ
→
−
A
=
−
A
104
88
103
syl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
¬
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
∧
¬
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
→
−
A
=
−
A
105
104
oveq1d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
¬
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
∧
¬
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
→
−
A
B
=
−
A
B
106
88
100
remulcld
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
¬
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
∧
¬
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
→
A
B
∈
ℝ
107
rexneg
⊢
A
B
∈
ℝ
→
−
A
B
=
−
A
B
108
106
107
syl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
¬
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
∧
¬
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
→
−
A
B
=
−
A
B
109
102
105
108
3eqtr4d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
¬
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
∧
¬
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
→
−
A
B
=
−
A
B
110
87
109
eqtr4d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
¬
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
∧
¬
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
→
−
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
=
−
A
B
111
77
80
110
3eqtr4d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
¬
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
∧
¬
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
→
if
0
<
B
∧
−
A
=
+∞
∨
B
<
0
∧
−
A
=
−∞
∨
0
<
−
A
∧
B
=
+∞
∨
−
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
−
A
=
−∞
∨
B
<
0
∧
−
A
=
+∞
∨
0
<
−
A
∧
B
=
−∞
∨
−
A
<
0
∧
B
=
+∞
−∞
−
A
B
=
−
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
112
73
111
pm2.61dan
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
∧
¬
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
→
if
0
<
B
∧
−
A
=
+∞
∨
B
<
0
∧
−
A
=
−∞
∨
0
<
−
A
∧
B
=
+∞
∨
−
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
−
A
=
−∞
∨
B
<
0
∧
−
A
=
+∞
∨
0
<
−
A
∧
B
=
−∞
∨
−
A
<
0
∧
B
=
+∞
−∞
−
A
B
=
−
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
113
60
112
pm2.61dan
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
¬
A
=
0
∨
B
=
0
→
if
0
<
B
∧
−
A
=
+∞
∨
B
<
0
∧
−
A
=
−∞
∨
0
<
−
A
∧
B
=
+∞
∨
−
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
−
A
=
−∞
∨
B
<
0
∧
−
A
=
+∞
∨
0
<
−
A
∧
B
=
−∞
∨
−
A
<
0
∧
B
=
+∞
−∞
−
A
B
=
−
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
114
113
ifeq2da
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
if
A
=
0
∨
B
=
0
0
if
0
<
B
∧
−
A
=
+∞
∨
B
<
0
∧
−
A
=
−∞
∨
0
<
−
A
∧
B
=
+∞
∨
−
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
−
A
=
−∞
∨
B
<
0
∧
−
A
=
+∞
∨
0
<
−
A
∧
B
=
−∞
∨
−
A
<
0
∧
B
=
+∞
−∞
−
A
B
=
if
A
=
0
∨
B
=
0
0
−
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
115
9
114
eqtrd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
if
−
A
=
0
∨
B
=
0
0
if
0
<
B
∧
−
A
=
+∞
∨
B
<
0
∧
−
A
=
−∞
∨
0
<
−
A
∧
B
=
+∞
∨
−
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
−
A
=
−∞
∨
B
<
0
∧
−
A
=
+∞
∨
0
<
−
A
∧
B
=
−∞
∨
−
A
<
0
∧
B
=
+∞
−∞
−
A
B
=
if
A
=
0
∨
B
=
0
0
−
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
116
xnegeq
⊢
if
A
=
0
∨
B
=
0
0
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
=
0
→
−
if
A
=
0
∨
B
=
0
0
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
=
−
0
117
116
1
eqtrdi
⊢
if
A
=
0
∨
B
=
0
0
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
=
0
→
−
if
A
=
0
∨
B
=
0
0
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
=
0
118
xnegeq
⊢
if
A
=
0
∨
B
=
0
0
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
=
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
→
−
if
A
=
0
∨
B
=
0
0
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
=
−
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
119
117
118
ifsb
⊢
−
if
A
=
0
∨
B
=
0
0
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
=
if
A
=
0
∨
B
=
0
0
−
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
120
115
119
eqtr4di
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
if
−
A
=
0
∨
B
=
0
0
if
0
<
B
∧
−
A
=
+∞
∨
B
<
0
∧
−
A
=
−∞
∨
0
<
−
A
∧
B
=
+∞
∨
−
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
−
A
=
−∞
∨
B
<
0
∧
−
A
=
+∞
∨
0
<
−
A
∧
B
=
−∞
∨
−
A
<
0
∧
B
=
+∞
−∞
−
A
B
=
−
if
A
=
0
∨
B
=
0
0
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
121
xnegcl
⊢
A
∈
ℝ
*
→
−
A
∈
ℝ
*
122
xmulval
⊢
−
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
−
A
⋅
𝑒
B
=
if
−
A
=
0
∨
B
=
0
0
if
0
<
B
∧
−
A
=
+∞
∨
B
<
0
∧
−
A
=
−∞
∨
0
<
−
A
∧
B
=
+∞
∨
−
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
−
A
=
−∞
∨
B
<
0
∧
−
A
=
+∞
∨
0
<
−
A
∧
B
=
−∞
∨
−
A
<
0
∧
B
=
+∞
−∞
−
A
B
123
121
122
sylan
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
−
A
⋅
𝑒
B
=
if
−
A
=
0
∨
B
=
0
0
if
0
<
B
∧
−
A
=
+∞
∨
B
<
0
∧
−
A
=
−∞
∨
0
<
−
A
∧
B
=
+∞
∨
−
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
−
A
=
−∞
∨
B
<
0
∧
−
A
=
+∞
∨
0
<
−
A
∧
B
=
−∞
∨
−
A
<
0
∧
B
=
+∞
−∞
−
A
B
124
xmulval
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
A
⋅
𝑒
B
=
if
A
=
0
∨
B
=
0
0
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
125
xnegeq
⊢
A
⋅
𝑒
B
=
if
A
=
0
∨
B
=
0
0
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
→
−
A
⋅
𝑒
B
=
−
if
A
=
0
∨
B
=
0
0
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
126
124
125
syl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
−
A
⋅
𝑒
B
=
−
if
A
=
0
∨
B
=
0
0
if
0
<
B
∧
A
=
+∞
∨
B
<
0
∧
A
=
−∞
∨
0
<
A
∧
B
=
+∞
∨
A
<
0
∧
B
=
−∞
+∞
if
0
<
B
∧
A
=
−∞
∨
B
<
0
∧
A
=
+∞
∨
0
<
A
∧
B
=
−∞
∨
A
<
0
∧
B
=
+∞
−∞
A
B
127
120
123
126
3eqtr4d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
−
A
⋅
𝑒
B
=
−
A
⋅
𝑒
B