Metamath Proof Explorer


Theorem xlt0neg1

Description: Extended real version of lt0neg1 . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xlt0neg1 A*A<00<A

Proof

Step Hyp Ref Expression
1 0xr 0*
2 xltneg A*0*A<00<A
3 1 2 mpan2 A*A<00<A
4 xneg0 0=0
5 4 breq1i 0<A0<A
6 3 5 bitrdi A*A<00<A