Metamath Proof Explorer


Theorem xmulneg2

Description: Extended real version of mulneg2 . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmulneg2 A*B*A𝑒B=A𝑒B

Proof

Step Hyp Ref Expression
1 xmulneg1 B*A*B𝑒A=B𝑒A
2 1 ancoms A*B*B𝑒A=B𝑒A
3 xnegcl B*B*
4 xmulcom A*B*A𝑒B=B𝑒A
5 3 4 sylan2 A*B*A𝑒B=B𝑒A
6 xmulcom A*B*A𝑒B=B𝑒A
7 xnegeq A𝑒B=B𝑒AA𝑒B=B𝑒A
8 6 7 syl A*B*A𝑒B=B𝑒A
9 2 5 8 3eqtr4d A*B*A𝑒B=A𝑒B