Step |
Hyp |
Ref |
Expression |
1 |
|
elxr |
⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) |
2 |
|
rexneg |
⊢ ( 𝐴 ∈ ℝ → -𝑒 𝐴 = - 𝐴 ) |
3 |
|
renegcl |
⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) |
4 |
2 3
|
eqeltrd |
⊢ ( 𝐴 ∈ ℝ → -𝑒 𝐴 ∈ ℝ ) |
5 |
4
|
rexrd |
⊢ ( 𝐴 ∈ ℝ → -𝑒 𝐴 ∈ ℝ* ) |
6 |
|
xnegeq |
⊢ ( 𝐴 = +∞ → -𝑒 𝐴 = -𝑒 +∞ ) |
7 |
|
xnegpnf |
⊢ -𝑒 +∞ = -∞ |
8 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
9 |
7 8
|
eqeltri |
⊢ -𝑒 +∞ ∈ ℝ* |
10 |
6 9
|
eqeltrdi |
⊢ ( 𝐴 = +∞ → -𝑒 𝐴 ∈ ℝ* ) |
11 |
|
xnegeq |
⊢ ( 𝐴 = -∞ → -𝑒 𝐴 = -𝑒 -∞ ) |
12 |
|
xnegmnf |
⊢ -𝑒 -∞ = +∞ |
13 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
14 |
12 13
|
eqeltri |
⊢ -𝑒 -∞ ∈ ℝ* |
15 |
11 14
|
eqeltrdi |
⊢ ( 𝐴 = -∞ → -𝑒 𝐴 ∈ ℝ* ) |
16 |
5 10 15
|
3jaoi |
⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) → -𝑒 𝐴 ∈ ℝ* ) |
17 |
1 16
|
sylbi |
⊢ ( 𝐴 ∈ ℝ* → -𝑒 𝐴 ∈ ℝ* ) |