Metamath Proof Explorer


Theorem xnegcl

Description: Closure of extended real negative. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xnegcl ( 𝐴 ∈ ℝ* → -𝑒 𝐴 ∈ ℝ* )

Proof

Step Hyp Ref Expression
1 elxr ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) )
2 rexneg ( 𝐴 ∈ ℝ → -𝑒 𝐴 = - 𝐴 )
3 renegcl ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ )
4 2 3 eqeltrd ( 𝐴 ∈ ℝ → -𝑒 𝐴 ∈ ℝ )
5 4 rexrd ( 𝐴 ∈ ℝ → -𝑒 𝐴 ∈ ℝ* )
6 xnegeq ( 𝐴 = +∞ → -𝑒 𝐴 = -𝑒 +∞ )
7 xnegpnf -𝑒 +∞ = -∞
8 mnfxr -∞ ∈ ℝ*
9 7 8 eqeltri -𝑒 +∞ ∈ ℝ*
10 6 9 eqeltrdi ( 𝐴 = +∞ → -𝑒 𝐴 ∈ ℝ* )
11 xnegeq ( 𝐴 = -∞ → -𝑒 𝐴 = -𝑒 -∞ )
12 xnegmnf -𝑒 -∞ = +∞
13 pnfxr +∞ ∈ ℝ*
14 12 13 eqeltri -𝑒 -∞ ∈ ℝ*
15 11 14 eqeltrdi ( 𝐴 = -∞ → -𝑒 𝐴 ∈ ℝ* )
16 5 10 15 3jaoi ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) → -𝑒 𝐴 ∈ ℝ* )
17 1 16 sylbi ( 𝐴 ∈ ℝ* → -𝑒 𝐴 ∈ ℝ* )