Description: Equality in terms of 'less than or equal to', 'less than'. (Contributed by Thierry Arnoux, 5-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xeqlelt | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ ¬ 𝐴 < 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrletri3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) ) ) | |
| 2 | xrlenlt | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵 ) ) | |
| 3 | 2 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵 ) ) |
| 4 | 3 | anbi2d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) ↔ ( 𝐴 ≤ 𝐵 ∧ ¬ 𝐴 < 𝐵 ) ) ) |
| 5 | 1 4 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ ¬ 𝐴 < 𝐵 ) ) ) |