Metamath Proof Explorer


Theorem xlimrel

Description: The limit on extended reals is a relation. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Assertion xlimrel Rel ~~>*

Proof

Step Hyp Ref Expression
1 lmrel Rel ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) )
2 df-xlim ~~>* = ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) )
3 2 releqi ( Rel ~~>* ↔ Rel ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) ) )
4 1 3 mpbir Rel ~~>*