Step |
Hyp |
Ref |
Expression |
1 |
|
xlimres.1 |
⊢ ( 𝜑 → 𝐹 ∈ ( ℝ* ↑pm ℂ ) ) |
2 |
|
xlimres.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
letopon |
⊢ ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* ) |
4 |
3
|
a1i |
⊢ ( 𝜑 → ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* ) ) |
5 |
4 1 2
|
lmres |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) ) 𝐴 ↔ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) ) 𝐴 ) ) |
6 |
|
df-xlim |
⊢ ~~>* = ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) ) |
7 |
6
|
breqi |
⊢ ( 𝐹 ~~>* 𝐴 ↔ 𝐹 ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) ) 𝐴 ) |
8 |
6
|
breqi |
⊢ ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ~~>* 𝐴 ↔ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) ) 𝐴 ) |
9 |
5 7 8
|
3bitr4g |
⊢ ( 𝜑 → ( 𝐹 ~~>* 𝐴 ↔ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ~~>* 𝐴 ) ) |