Metamath Proof Explorer


Theorem xlimres

Description: A function converges iff its restriction to an upper integers set converges. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimres.1 ( 𝜑𝐹 ∈ ( ℝ*pm ℂ ) )
xlimres.2 ( 𝜑𝑀 ∈ ℤ )
Assertion xlimres ( 𝜑 → ( 𝐹 ~~>* 𝐴 ↔ ( 𝐹 ↾ ( ℤ𝑀 ) ) ~~>* 𝐴 ) )

Proof

Step Hyp Ref Expression
1 xlimres.1 ( 𝜑𝐹 ∈ ( ℝ*pm ℂ ) )
2 xlimres.2 ( 𝜑𝑀 ∈ ℤ )
3 letopon ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* )
4 3 a1i ( 𝜑 → ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* ) )
5 4 1 2 lmres ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) ) 𝐴 ↔ ( 𝐹 ↾ ( ℤ𝑀 ) ) ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) ) 𝐴 ) )
6 df-xlim ~~>* = ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) )
7 6 breqi ( 𝐹 ~~>* 𝐴𝐹 ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) ) 𝐴 )
8 6 breqi ( ( 𝐹 ↾ ( ℤ𝑀 ) ) ~~>* 𝐴 ↔ ( 𝐹 ↾ ( ℤ𝑀 ) ) ( ⇝𝑡 ‘ ( ordTop ‘ ≤ ) ) 𝐴 )
9 5 7 8 3bitr4g ( 𝜑 → ( 𝐹 ~~>* 𝐴 ↔ ( 𝐹 ↾ ( ℤ𝑀 ) ) ~~>* 𝐴 ) )