Metamath Proof Explorer


Theorem xlimres

Description: A function converges iff its restriction to an upper integers set converges. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimres.1 φ F * 𝑝𝑚
xlimres.2 φ M
Assertion xlimres φ F * A F M * A

Proof

Step Hyp Ref Expression
1 xlimres.1 φ F * 𝑝𝑚
2 xlimres.2 φ M
3 letopon ordTop TopOn *
4 3 a1i φ ordTop TopOn *
5 4 1 2 lmres φ F t ordTop A F M t ordTop A
6 df-xlim * = t ordTop
7 6 breqi F * A F t ordTop A
8 6 breqi F M * A F M t ordTop A
9 5 7 8 3bitr4g φ F * A F M * A