Metamath Proof Explorer


Theorem xlimres

Description: A function converges iff its restriction to an upper integers set converges. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimres.1
|- ( ph -> F e. ( RR* ^pm CC ) )
xlimres.2
|- ( ph -> M e. ZZ )
Assertion xlimres
|- ( ph -> ( F ~~>* A <-> ( F |` ( ZZ>= ` M ) ) ~~>* A ) )

Proof

Step Hyp Ref Expression
1 xlimres.1
 |-  ( ph -> F e. ( RR* ^pm CC ) )
2 xlimres.2
 |-  ( ph -> M e. ZZ )
3 letopon
 |-  ( ordTop ` <_ ) e. ( TopOn ` RR* )
4 3 a1i
 |-  ( ph -> ( ordTop ` <_ ) e. ( TopOn ` RR* ) )
5 4 1 2 lmres
 |-  ( ph -> ( F ( ~~>t ` ( ordTop ` <_ ) ) A <-> ( F |` ( ZZ>= ` M ) ) ( ~~>t ` ( ordTop ` <_ ) ) A ) )
6 df-xlim
 |-  ~~>* = ( ~~>t ` ( ordTop ` <_ ) )
7 6 breqi
 |-  ( F ~~>* A <-> F ( ~~>t ` ( ordTop ` <_ ) ) A )
8 6 breqi
 |-  ( ( F |` ( ZZ>= ` M ) ) ~~>* A <-> ( F |` ( ZZ>= ` M ) ) ( ~~>t ` ( ordTop ` <_ ) ) A )
9 5 7 8 3bitr4g
 |-  ( ph -> ( F ~~>* A <-> ( F |` ( ZZ>= ` M ) ) ~~>* A ) )