Description: Trichotomy law for 'less than' for extended reals. (Contributed by NM, 10-Dec-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | xrlttri2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ≠ 𝐵 ↔ ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltso | ⊢ < Or ℝ* | |
2 | sotrieq | ⊢ ( ( < Or ℝ* ∧ ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) → ( 𝐴 = 𝐵 ↔ ¬ ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ) ) | |
3 | 1 2 | mpan | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 = 𝐵 ↔ ¬ ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
4 | 3 | bicomd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ¬ ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ↔ 𝐴 = 𝐵 ) ) |
5 | 4 | necon1abid | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ≠ 𝐵 ↔ ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |