Metamath Proof Explorer


Theorem xrlttri2

Description: Trichotomy law for 'less than' for extended reals. (Contributed by NM, 10-Dec-2007)

Ref Expression
Assertion xrlttri2 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴𝐵 ↔ ( 𝐴 < 𝐵𝐵 < 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 xrltso < Or ℝ*
2 sotrieq ( ( < Or ℝ* ∧ ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) ) → ( 𝐴 = 𝐵 ↔ ¬ ( 𝐴 < 𝐵𝐵 < 𝐴 ) ) )
3 1 2 mpan ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴 = 𝐵 ↔ ¬ ( 𝐴 < 𝐵𝐵 < 𝐴 ) ) )
4 3 bicomd ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( ¬ ( 𝐴 < 𝐵𝐵 < 𝐴 ) ↔ 𝐴 = 𝐵 ) )
5 4 necon1abid ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴𝐵 ↔ ( 𝐴 < 𝐵𝐵 < 𝐴 ) ) )