Description: An extended real that is neither real nor plus infinity, is minus infinity. (Contributed by Glauco Siliprandi, 5-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xrnpnfmnf.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
| xrnpnfmnf.2 | ⊢ ( 𝜑 → ¬ 𝐴 ∈ ℝ ) | ||
| xrnpnfmnf.3 | ⊢ ( 𝜑 → 𝐴 ≠ +∞ ) | ||
| Assertion | xrnpnfmnf | ⊢ ( 𝜑 → 𝐴 = -∞ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnpnfmnf.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
| 2 | xrnpnfmnf.2 | ⊢ ( 𝜑 → ¬ 𝐴 ∈ ℝ ) | |
| 3 | xrnpnfmnf.3 | ⊢ ( 𝜑 → 𝐴 ≠ +∞ ) | |
| 4 | 1 3 | jca | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞ ) ) |
| 5 | xrnepnf | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞ ) ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = -∞ ) ) | |
| 6 | 4 5 | sylib | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∨ 𝐴 = -∞ ) ) |
| 7 | pm2.53 | ⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = -∞ ) → ( ¬ 𝐴 ∈ ℝ → 𝐴 = -∞ ) ) | |
| 8 | 6 2 7 | sylc | ⊢ ( 𝜑 → 𝐴 = -∞ ) |