Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifcomnan | Unicode version |
Description: Commute the conditions in two nested conditionals if both conditions are not simultaneously true. (Contributed by SO, 15-Jul-2018.) |
Ref | Expression |
---|---|
ifcomnan |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.13 501 | . 2 | |
2 | iffalse 3950 | . . . 4 | |
3 | iffalse 3950 | . . . . 5 | |
4 | 3 | ifeq2d 3960 | . . . 4 |
5 | 2, 4 | eqtr4d 2501 | . . 3 |
6 | iffalse 3950 | . . . . 5 | |
7 | 6 | ifeq2d 3960 | . . . 4 |
8 | iffalse 3950 | . . . 4 | |
9 | 7, 8 | eqtr4d 2501 | . . 3 |
10 | 5, 9 | jaoi 379 | . 2 |
11 | 1, 10 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
\/ wo 368 /\ wa 369 = wceq 1395
if cif 3941 |
This theorem is referenced by: mdetunilem6 19119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-rab 2816 df-v 3111 df-un 3480 df-if 3942 |
Copyright terms: Public domain | W3C validator |