MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifcomnan Unicode version

Theorem ifcomnan 3990
Description: Commute the conditions in two nested conditionals if both conditions are not simultaneously true. (Contributed by SO, 15-Jul-2018.)
Assertion
Ref Expression
ifcomnan

Proof of Theorem ifcomnan
StepHypRef Expression
1 pm3.13 501 . 2
2 iffalse 3950 . . . 4
3 iffalse 3950 . . . . 5
43ifeq2d 3960 . . . 4
52, 4eqtr4d 2501 . . 3
6 iffalse 3950 . . . . 5
76ifeq2d 3960 . . . 4
8 iffalse 3950 . . . 4
97, 8eqtr4d 2501 . . 3
105, 9jaoi 379 . 2
111, 10syl 16 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  \/wo 368  /\wa 369  =wceq 1395  ifcif 3941
This theorem is referenced by:  mdetunilem6  19119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rab 2816  df-v 3111  df-un 3480  df-if 3942
  Copyright terms: Public domain W3C validator