Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iffv Unicode version

Theorem iffv 5883
 Description: Move a conditional outside of a function. (Contributed by Thierry Arnoux, 28-Sep-2018.)
Assertion
Ref Expression
iffv

Proof of Theorem iffv
StepHypRef Expression
1 fveq1 5870 . 2
2 fveq1 5870 . 2
31, 2ifsb 3954 1
 Colors of variables: wff setvar class Syntax hints:  =wceq 1395  ifcif 3941  `cfv 5593 This theorem is referenced by:  decpmatid  19271  pmatcollpwscmatlem1  19290 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rex 2813  df-if 3942  df-uni 4250  df-br 4453  df-iota 5556  df-fv 5601
 Copyright terms: Public domain W3C validator